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Photo-Nuclear Reactions: Photo-absorption

IV Giant Dipole Resonance
A photon interacts with protons in the target nuclei

— excites the Iso-Vector Giant Dipole Resonance (IVGDR)

E . ~7—-30MeV

Photo-absorption cross section is dominated by the electric dipole (£7) excitation of
nuclei.

1673 _ dB(E1)
o = aE, ———

abs 9 4 d Ey

Oas - photo-absorption cross section
B(ET1) : electric-dipole reduced transition probability
E_  :photon-energy = nuclear excitation energy

A : fine structure constant
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Photo-absorption cross section of heavy nuclei
Studied since the discovery of IVGDR J
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Photo-absorption cross section of heavy nuclei
Studied since the discovery of IVGDR

Shape of IVGDR:

described by a Lorentzian for spherical nuclei

O, = (¥, xn) cross sections for heavy nuclei

p and other charged particle decay
negligibly small due to Coulomb barrier

direct y decay from IVGDR is ~1%

Mean energy

a—)El —

nmy

El
mZj

Beene et al., PRC39, 1307 (1989)

El

Strength: TRK Sum-Rule

2re*h NZ NA
— ~ 60— MeV mb
mc A A

~ 854713 MeV  A.B. Migdal: 1944

How 1s the case of light nuclei?

3._:: | 'f;‘Au ./' 1 “M:/j 300 + 30) MeV fm?
S 51197 s e L
éé ‘ Au ;/ “= le=c 7\ (5y? : Tres
% »| £ \\
!qli ' \‘“"\d .
L0 L 200 B MeV)
Eres [\ T - |
e\ GDR mean energy
~ \\
> \
QO \\ 79-A"Mev
~ . Ve
;:é - J'\,—\c,\‘m\: ) ,
S -
IS
Bohr and Mottelson
o 100 A"
1.5 }
7____ 1 ) i I I 1
ol *l1] | | ;] ‘
E S L0p-- ————»4‘: %—%?tfj—wlb»*’%’-%
S (B #
o f |
L?j = 9 1l Ratio to the TRK sum rule
up to 30 MeV
0 50 1 ™ A

0 100 A

3



Photo-nuclear Reactions 1in Light Nuclel

For light nuclei

* photo-abs. c.s. # (y,xn) c.s.

large branch to p and o emissions

 Challenges to theoretical models

Structure
- stronger shell effect

- nuclear deformation

- nucleon correlations:

Cross Section (mb)
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Excitation Energy (MeV)
Example: 13C(y,xn) reaction data and predictions

also see the recent data from NewSUBARU PRC’24

a clustering, np pairing, tensor correlation, |..

Decay

Lack of data especially for charged particle decays
Large inconsistency among available data
Poor theoretical prediction

- direct and pre-equilibrium decay process in addition

to statistical decays

- 1sospin selection rule in the a-decay process

I'V Giant Dipole Resonance

7 sy
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Decay

Lack of data especially for charged particle decays
Large inconsistency among available data
Poor theoretical prediction

- direct and pre-equilibrium decay process in addition

to statistical decays

- 1sospin selection rule in the a-decay process

Decay calculation is important as
well as the structure calculations

I'V Giant Dipole Resonance
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Photo-nuclear Reactions 1in Light Nuclel

For light nuclei 19
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Damping of a nuclear collective excitation IVGDR

spreading of an ordered motion to a random motion
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Damping of a nuclear collective excitation IVGDR

spreading of an ordered motion to a random motion

CROSS SECTION (fm)

y ‘
time > spreading

L e
IVGDR ~~~~» direct decays ‘n={> '=> '
collective motion n,p,a,Y,.. .
> spreading Damping of IVGDR

~~nap pre-equilibrium
decays

) spreading
~~aop pre-equilibrium

> spreading decays

~~~~» compound (statistical)
decays

compound nucleus

thermal equilibrium



PANDORA Project:
Photo-Nuclear Reactions of Light Nucle1 (4<60)

Photo-nuclear reaction of light stable nuclei1 1s important for

* Nuclear structure/reaction studies
 Astro-nuclear physics, particle physics, detector response
« Applications

Radiation shield, decommissioning, reactions in nuclear reactors

Photo-activation analysis, nondestructive inspection

v-imaging, CT-diagnostics, biological effects

Homeland security, inspection of fission or explosive material

Medical RI production by photo-irradiation

Nuclear reaction/gamma radiation in thunder volts
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* Nuclear structure/reaction studies
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99.99999% of the elements in the universe is made of nuclei below A=60




Photo-nuclear reaction on 12C and 19O 1s not determined well

Oxygen (160) forms 65% of the human body weight (30% of Earth)

Carbon (12C) forms 18% (0.02%) Potential biological

_ _ radiation effect!
a-decay of IVGDR in 12C or 160 is not well measured.

%160 (120) isotopic abundance: 99.8 (98.9)%
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a-decay to low-lying (T' = 0) states is isospin-forbidden
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requires implementation of isospin-symmetry breaking by
Coulomb interaction

%160 (120) isotopic abundance: 99.8 (98.9)%
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Systematic Measurement on Photo-Absorption C.S.
and n,p,o,y decays for light stable nuclei

- E1 excitation strength distribution
-n, p, o,y decay branching ratios

- from light to A~60 for stable nuclei
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PANDORA Project
Photo-Absorption of Nucle1 and Decay Observation for Reactions in Astrophysics

Motivations

glntergalactic propagation of ultra-high energy comic rays (UHECRS)]

- Nuclear Structure

» electric dipole strength distribution: PDR, GDR, EDP
* decay mechanism
« gamma-decay of GR: damping mechanism

* alpha-clustering structure
- Nuclear-astrophysics and nucleosynthesis

- Neutral-current neutrino detection in large volume neutrino detectors

- Applicati
pplications "



Ultra-High-Energy Cosmic Rays (UHECRS) (ppc201s;
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Intergalactic Propagation of UHECR Nuclei
Greisen, Zatzepin, and Kuzmin (GZK) Cut-off
Another Galaxy Milky Way Galaxy
Earth

Ultra High Energy Cosmic Rays (UHECRS)

CMB

" 3 .‘V. Al -
photons : x hto

p
Ao =

UHECR  collision excites ] 0
7 nucleus GDR photo-disintegration 8

7’
% \% Shock front

Production Propagation Observation

Cosmic Microwave Background (CMB)

WMAP _
17=2.73 K

Photo-nuclear reactions determine the maximum
travel distance of UHECR nuclei and their
composition/energy evolution.

® vy ~ 1010 = (U) = ‘.
UHECR CMB excites

nucleus photon GDR photo-disintegration

GZK cut-off 13



Intergalactic Propagation of UHECR Nuclei
Greisen, Zatzepin, and Kuzmin (GZK) Cut-off

Other Galaxies Our Galaxy
#e % Propagation of UHECRs FN e
* ¥ i{ Pas x QEar&?
%1}* Photo-disintegration by collision *1}*
Production with CMB photons Observation
by air shower

Energy/composition change A A=14

Flux

Defltection by extragalactic

FLux

and galactic magnetic fields

A=28 A=l

Energy Energy

Cosmic Microwave Background (CMB)

WMAP il
7=2.73 K &

Photo-nuclear reactions determine the maximum
travel distance of UHECR nuclei and their
composition/energy evolution.

® v~1010»+ > @ == ‘. >
UHECR CMB excites

nucleus photon GDR photo-disintegration

GZK cut-off 14
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(v,xn), (y,a) reactions also take place.
Several unstable nuclei also contribute.
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PANDORA Project: Organization

Nuclear Experiment

RCNP

ELI-NP

iThemba LABS

TU-Darmstadt
U. Milano/INFN
Shanghai

U. Oslo

Nuclear Theory
AMD

NRFT

RPA /DFT

TALYS
UHECR Theory

Propagation

and production

Osaka Univ.

A. Tamii, N. Kobayashi, Y. Sasagawa, Y. Suzuki, Y. Irie, W.H. Guo, et al.

ELI-NP
P.-A. Soderstrom, D. Balabanski, A. Gavrilescu, Asli Kusoglu, et al.,

iThemba LABS, Univ. Witwatersland, Stellenbosh Univ.
L. Pellegri, R. Neveling, J.A.C. Bekker, et a.,

P. von Neumann-Cosel, N. Pietralla, J. Isaak, J. Kleemann, M. Spall, et al.

A. Bracco, F. Camera, F. Crespi, O. Wieland, et al.

H. Utsunomiya, H. Wang, et al.
S. Siem, A. Gorgen , K.C.W. Lj, et al,,

M. Kimura, Y. Taniguchi, H. Motoki Large Scale
Shell Model
E. Litvinova, P. Ring, H. Wibowo Y. Utsuno, N. Shimizu

K. Sigja, O.L. Noan
RPA by T. Inakura, QPM by N. Tsoneva

Reaction/Decay

S. Goriely, E. Khan

K. Ogata, F. Minato

D. Allard, B. Baret, 1. Deloncle, J. Kiener, E. Parizot, V. Tatischeff

S. Nagataki, E. Kido, J. Oliver, H. Haoning
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PANDORA project: experimental facilities .
>
Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics

White paper: AT et al.,. Euro. Phys. J. A 59, 208 (2023)

RCNP-Grand Raiden (Osaka, Japan) , .
Experiments at three facilities
‘ with complementary techniques

— T

e .l...l.‘:?\".ﬁ ' LI |

Joint project of experimental nuclear physics,
theoretical nuclear physics and particle
astrophysics 17




Probing Photo-Nuclear Response of Nuclei

Virtual photon excitation by proton scattering (RCNP, iThemba)

. P
» Missing mass method P .y
with proton Coulomb excitation
* better for the total c.s.
and for the c.s. distribution p p
larger cross sections @ > Q —> ©
applicable to p,a,y decays (<')) —@ 1,0,V

Real photon excitation (ELI-NP, Shanghai)

« Gamma-beam by laser-Compton
scattering with an electron beam

* individual decay channels
better for absolute normalization
applicable also for n decays



@ Virtual Photon Excitation by Proton Scattering at 0°

RCNP AT et al., NIMA2009
Applicable at RCNP and P von Neumann-Cosel
iThemba LABS and AT EPJA2019

High-Resolution
Spectrometer
Grand Raiden

-F.C. —

" Focal Plane Detectors (gR:Z 5’ 4. 5° )

Scattering

Proton scattering ~ Chamber
at very forward angles Dump-Q

Q

208Pb target: 5.2 mg/cm?2
Intensity : 1-8 nA

Grand Raiden (GR)

0 deg. Beam Dump Polarized Proton

(GR =0 deg.) Beam at 295 MeV
High resolution measurement: 0 1 2 3m 19

20 keV by dispersion matching.




Proton beam data in comparison with (y,y’) and (y,xn)
208Ph
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Ep = 295MeV
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Tamii er al. (2011)
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Berman et al. (1987) —+— |

Veyssiere et al. (1970) e~
SMLO fit — |

Present work +~e—

8 10 12 14 16 18 20 24 28 32 38
Photon energy (MeV)

AT et al., PRL2011

low-lying
discrete states

GDR region

AT et al., PRL2011

(y,xn) at NewSUBARU
I. Gheorghe et al, PRC2024



The first PANDORA experiment at RCNP, Oct. 2023

Detector setup at Grand Raiden Spectrometer

Feedthrough duct /

Downstream

SAKRA(SI detector)

Osaka Univ. Upstream

Upstream

Downstream

Target ladder

scattering chamber

LaBr;detector[7] & frame

Features

* Near Spherical shape \
— To bring the detector closer

This LaBr; detectors belongs to
* SAKRA mounted on lid the Milan Group.

—>For easy SAKRA evacuation

21
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Targets

Measurements on 10-20 nucle1 in ~10 years
with theoretical model developments 0,1, distribution and decay

branching ratios in 10% accuracy

Candidate target nuclides

'l

‘

'

llllll

lllllllllll

* (v,xn) on 180, 48Ca, %4Ni

: planned in Oct 2025

lllllllllll

first cases, alpha decay, reference target

light nuclei

lllllllll

lllllllll

N>Z nuclei

odd and odd-odd nuclei

Measured in 2023

photo-abs. c.s. + charged particle decay
+ gamma
photo-abs. ¢.s. + gamma

JU

23
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Preliminary Cross Sections
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Summary
> <

» The photo-absorption c.s. and the decay branching ratios will be
systematically measured up to A~60 in the PANDORA project.

* The photo-nuclear reaction data are important for developing nuclear
structure/decay models and for understanding the inter-galactic
propagation of UHECR:s.

 Virtual photon excitation method by proton scattering has been
applied at RCNP (will be at iThemba LABS), and real photon
excitation by LCS gamma-ray facilities.

e The first PANDORA experiment was carried out at RCNP out 1n
2023. The second experiment 1s scheduled in Oct 2025.
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Measurement of the Photo-Nuclear Reaction and decay
branching ratios by proton scattering

Virtual photo-excitation by proton scattering at forward angles

* Missing mass method P %P
with proton Coulomb excitation “ "< -
. L J
* applicable for p,a,y decays
P P
W > ‘i. - @
Multipole-decomposition analysis of the (<.>) —0 50,7

angular distribution to extract £1.

P. von Neumann-Cosel and AT, EJPA’19
AT et al., NIMA’09
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(i)
(i

UHECR spectrum after their extragalactic propagation

Assuming :

a uniform distribution of extragalactic sources

standard candle sources emitting a power law spectrum of UHECRs (i.e N(E)~E®)

A set of parameters which allows a satisfactory reproduction of the UHECR spectrum and composition are (for
the code used in Allard et al., 2005) :

a low maximum energy at the sources Emax(Z)=2Zx4.1018eV where Z is the charge of the nucleus
relative abundances : H=0.1, He=0.15, CNO=0.68, Si=0.07, Fe=0.002 (NB : no astrophysical motivations)

a source spectral index p=0.61

10%° - T T T
= 2004 version "Old version'
-— Default --—— Default + Discrete Levels 1.4 L Bﬁ;s{;m )
- — ersion
No o = Auger data (2017) Discrete Levels

1 024

E3®(E)

1 023 L

A mixed compostion (with hard source spectral index)

which gives a good account of the data with the 2004 vers@
of the code is used with the different new versions of the 06 -
cross sections calculations

No a

Ty

Il

T

|
19 19.5
log, E eV

* The spectrum with the “No a” settings is quite harder than the other —> slower photodisintegration
* “Discrete Levels” settings and the 2004 version are quite close to each other

20 18.5

* The “default” and “old settings” are softer

—> channels involving a particles in light nuclei (e.g,(y,a), (y,n+q), ...), see next slides

Why is that so ?

19

log, E eV

!
19.5

20
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Comparison of the simulated spectral shape
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The RPA implies lower cutoff rigidity than TALYS mainly because of
the difference in the GDR peaks. This is the opposite effect to the

PSB model.
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Difference b/w TALYS (CRPropa default)
and the RPA calc. in the spectrum
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The difference: more than the statistical
uncertainty of the experimental data.

E. Kido et al., Astropart. Phys. 2023
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Energy Loss Process of UHECRSs in Extragalactlc Propagatlon
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Refinements of the theoretical
model in [kha05]

[ste99]

Unfortunately, photodisintegration cross section data are
incomplete. For many reaction channels, o(e) data do not
exist. Also, integrated cross section strengths are not avail-
able for all of the cxclusive channels. The most complete
compilation of the world’s GDR cross section data exists in
the 15 volumes of Fuller & Gerstenberg (1983). In these
volumes GDR cross section data for *Fe, for example, are
given only for the (3, pX) channel and the inverse channels
(o, y) and (p, 7).
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