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A bit of history: discovery of subnuclear particles
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they cannot all be “elementary”...

... or can they?



Statistical Bootstrap and Hagedorn Temperature

● very elegant idea: 

○ hadrons are made of hadrons which in turn are made of hadrons which in turn...

○ no fundamental hadron (“nuclear democracy”)

○ very popular in the sixties (pre-quarks)

(very much “sixties”, in fact: F Capra takes the idea and runs away with it in “The Tao of Physics”)

● pioneered by Geoffrey Chew (UC Berkeley)
○ e.g.: G. Chew (1962). S-Matrix theory of strong interactions. New York: W A Benjamin

● developed by Rolf Hagedorn (CERN) into a full-fledged theory of strong interactions
○ e.g.: R Hagedorn: Statistical thermodynamics of strong interactions at high energies 1965 Nuovo Cim. Suppl. 3 147

● very successful in calculating hadronic collision cross sections
○ e.g.: H Grote, R Hagedorn and J Ranft, Atlas of particle spectra, CERN-report (1970)

○ calculated based on hadron exchange → need to know spectrum of all existing hadrons
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Spectrum of hadron masses

● spectrum of hadrons from “bootstrap equation”:

○ exponential growth of number of hadrons at higher and higher masses!

○ controlled by “Hagedorn temperature”, TH ~ 150-160 MeV

● btw, still holds: very similar results from lattice QCD
○ e.g.: A Majumder, B Müller, PRL 105:252002,2010 

○ that’s why bootstrap theory worked well for hadron interactions!

(the idea was very deep, even if the picture was not the correct fundamental one!)
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green: states known in 1967

red: states known by mid-1990’s
blue: expected spectrum for TH = 158 MeV



Hagedorn temperature: a limiting value?
e.g. following K Redlich, H Satz in “Melting Hadrons, Boiling Quarks”, J Rafelski ed (Springer, 2016)

● partition function for a system of non-interacting pions: 

● interactions as resonance formation:

○ interacting system of pions → non-interacting gas of all possible resonances

● inserting Hagedorn’s spectrum:

○ energy pumped into such a system, goes to creating heavier and heavier resonances

○ asymptotically reaching TH

→ TH would then be the maximum possible temperature!
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... but Quarks enter the scene...

● the other main idea proposed in the 60’s to explain the multitude of hadrons

● 1961: “eightfold way” (SU(3) flavour symmetry, Murray Gell-Mann)

● 1965: quark hypothesis (Murray Gell-Mann, George Zweig)

● 1968: observation of “partons” in Deep Inelastic Scattering at SLAC

● 1970: GIM mechanism (Sheldon Glashow, John Iliopoulos, Luciano Maiani)
○ to explain absence of flavour-changing neutral currents

○ proposal of fourth quark (charm) → cancellation of flavour-changing terms

● 1974: discovery of charm (J/𝜓) at Brookhaven and SLAC (+ Frascati 5 days later)

→ quark hypothesis widely accepted, and then ...
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1974: Lee and Wick: a key precursor
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● scalar field Φ 𝑥

● extreme conditions (e.g. high T) → vacuum expectation value Φ may vanish

● → nucleons become effectively massless!



1975, Cabibbo and Parisi: “quark liberation” at high T
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● TH not maximum attainable, simply: for T > TH quarks not confined any more

first phase diagram!



1975, Collins and Perry: “quark soup” in neutron stars?
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the basic argument is contained in only a few lines...
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1978, the name is coined

by E V Shuryak in Yadernaya Fizika 28 (1978) 403: “Kvark-Glyuonnaya Plazma”



Lattice QCD
● the rigorous way of performing calculations in the non-perturbative regime of QCD

● discretisation on a space-time lattice 

○ → ultraviolet (i.e. large-momentum scale) divergencies can be avoided
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[A Bazavov et al. PRD 90 094503 (2014)]

○ around critical temperature (TC): rapid change of

■ energy density 𝜀

■ entropy density s

■ pressure p

○ due to activation of partonic degrees of freedom

○ at zero baryon density → smooth crossover

○ TC = (156.5 ± 1.5) MeV

○ 𝜀 ~ O(GeV/fm3)

[A Bazavov et al. Phys.Lett.B 795 (2019) 15]



The QCD (de-)confinement phase transition
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● origin of nucleon masses

○ 2 mu + md ~ 10 MeV!

● phase transition in QFT

○ the only experimentally accessible one!

● Big Bang evolution

○ QGP ➔ hadrons at t ~ 10 µs

● structure of compact stars



● ... what about the physical mechanisms behind confinement?

● can we get an intuitive view of what happens in a confined system?

● can we get a feeling about the physical conditions for deconfinement?

● ... let’s try...
(mostly following K Gottfried and V Weisskopf, “Concepts of Particle Physics”, Vol. II, Oxford University Press, 1986)
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Confining potential in QCD
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● unlike in QED, the QCD field lines are compressed into a “flux tube” (or “string”) 

○ cross-section (~fm2)

→ long-distance potential which grows linearly with r:

→ this leads to confinement

QED
QCD

r

𝑉 ~ 𝜅𝑟 with 𝜅 ~ GeV/fm



String potential

● pulling string apart → energy in string increases
○ V ~ 𝜅𝑟

● string breaking point 
○ creating a q-qbar pair becomes energetically favourable 

→ colour charge neutralised

→ one ends up with two colour neutral strings
○ ... and eventually hadrons
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The QCD vacuum is far from trivial...
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● e.g.: 2 gluons in singlet state at a distance r
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What just happened?

a state with 

○ two gluons in singlet configuration

○ at a distance r0 ~ 1/Λ

... is actually energetically favoured! 

○ over the “empty” vacuum
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or, as Gottfried and Weisskopf put it:

“The ‘empty’ vacuum is unstable. 

There is a state of lower energy that 

consists of cells, each containing a gluon 
pair in colour- and spin- singlet state. 

The size of these cells is of order r0. 

We may speak of a “liquid” vacuum.”

r0 ~ 1/𝚲𝑸𝑪𝑫

E

r
minimum

We can picture confinement 

as an effect of the pressure 

exerted by this liquid...



The MIT Bag Model

● the essential phenomenology of confinement is described as follows:

○ assume quarks are confined within bubbles (bags) of perturbative (=empty) vacuum 

○ on which the QCD vacuum (“liquid”) exerts a confining pressure B (= bag constant)

○ B ~ Λ𝑄𝐶𝐷
4

→ hadron size ~ 1/ 𝚲𝑸𝑪𝑫

18
(from: K Gottfried and V Weisskopf, “Concepts of Particle Physics”, Vol. II, Oxford University Press, 1986)



Deconfinement: the bag viewpoint

● if a system of hadrons is brought to sufficiently 

large density and/or large temperature 

→ deconfinement phase transition

● in the deconfined phase the individual bags 

have coalesced into a single large bag                  

of Quark-Gluon Plasma (QGP)

● quarks and gluons are now free to move around 

over a larger volume

● can one get a quantitative estimate of T?
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Deconfinement: a “toy model”

● Gibbs’ criterion: the stable phase is the one with the largest pressure 

● from statistical mechanics:

(for an ideal gas)
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● at low temperature the hadron gas is the stable phase

● but there is a temperature (TC) above which the QGP “wins”

○ thanks to the larger number of degrees of freedom
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one can easily derive:

and plugging in 𝐵1/4~ 200MeV
one gets:

not too bad... 
(latest lattice estimate: 156.5 ± 1.5 MeV)
[A Bazavov et al. Phys.Lett.B 795 (2019) 15]
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Confinement, chiral symmetry and mass (an intuitive example)

● “chiral symmetry”: fermions and antifermions have opposite helicity 

● exact only for massless fermions 

○ travel at light speed → cannot be overtaken (overtaking would flip helicity...)

● now, take e.g. a left-handed, confined fermion

○ propagation is limited → at some point it will “hit a wall”...

○ ... and bounce back... reflection flips Ԧ𝑝, but not Ԧ𝑗 !
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● “chiral symmetry”: fermions and antifermions have opposite helicity 

● exact only for massless fermions 

○ travel at light speed → cannot be overtaken (overtaking would flip helicity...)

● now, take e.g. a left-handed, confined fermion

○ propagation is limited → at some point it will “hit a wall”...

○ ... and bounce back... reflection flips Ԧ𝑝, but not Ԧ𝑗 !

→ even (quasi-)massless fermions acquire an additional mass term when confined!
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Confinement, chiral symmetry and mass (an intuitive example)



(Partial) chiral symmetry restoration

● confined quarks acquire additional mass (~ 350 MeV) dynamically
○ through the confining effect of strong interactions 

○ e.g.: M(proton)  938 MeV; m(u)+m(u)+m(d) ~ 10 MeV

→ ~ 99% of the mass of standard matter is generated by confinement!

■ only ~ 1% by Higgs mechanism!

● deconfinement expected to be accompanied by restoration of masses
→ to the “bare” values of the Lagrangian

○ e.g.: m(s): ~ 500 MeV → ~ 150 MeV

● as we saw, symmetry can be exact only for massless particles:

→ “partial” restoration of chiral (𝜒) symmetry
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