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第一讲回顾...
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Hagedorn temperature: a limiting value?
e.g. following K Redlich, H Satz in “Melting Hadrons, Boiling Quarks”, J Rafelski ed (Springer, 2016)

● partition function for a system of non-interacting pions: 

● interactions as resonance formation:

○ interacting system of pions → non-interacting gas of all possible resonances

● inserting Hagedorn’s spectrum:

○ energy pumped into such a system, goes to creating heavier and heavier resonances

○ asymptotically reaching TH

→ TH would then be the maximum possible temperature!
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1975, Cabibbo and Parisi: “quark liberation” at high T
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● TH not maximum attainable, simply: for T > TH quarks not confined any more

first phase diagram!



The MIT Bag Model

● the essential phenomenology of confinement is described as follows:

○ assume quarks are confined within bubbles (bags) of perturbative (=empty) vacuum 

○ on which the QCD vacuum (“liquid”) exerts a confining pressure B (= bag constant)

○ B ~ Λ𝑄𝐶𝐷
4

→ hadron size ~ 1/ 𝚲𝑸𝑪𝑫

5
(from: K Gottfried and V Weisskopf, “Concepts of Particle Physics”, Vol. II, Oxford University Press, 1986)



● at low temperature the hadron gas is the stable phase

● but there is a temperature (TC) above which the QGP “wins”

○ thanks to the larger number of degrees of freedom
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one can easily derive:

and plugging in 𝐵1/4~ 200MeV
one gets:

not too bad... 
(latest lattice estimate: 156.5 ± 1.5 MeV)
[A Bazavov et al. Phys.Lett.B 795 (2019) 15]
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Lattice QCD
● the rigorous way of performing calculations in the non-perturbative regime of QCD

● discretisation on a space-time lattice 

○ → ultraviolet (i.e. large-momentum scale) divergencies can be avoided
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[A Bazavov et al. PRD 90 094503 (2014)]

○ around critical temperature (TC): rapid change of

■ energy density 𝜀

■ entropy density s

■ pressure p

○ due to activation of partonic degrees of freedom

○ at zero baryon density → smooth crossover

○ TC = (156.5 ± 1.5) MeV

○ 𝜀 ~ O(GeV/fm3)

[A Bazavov et al. Phys.Lett.B 795 (2019) 15]



● “chiral symmetry”: fermions and antifermions have opposite helicity 

● exact only for massless fermions 

○ travel at light speed → cannot be overtaken (overtaking would flip helicity...)

● now, take e.g. a left-handed, confined fermion

○ propagation is limited → at some point it will “hit a wall”...

○ ... and bounce back... reflection flips Ԧ𝑝, but not Ԧ𝑗 !

→ even (quasi-)massless fermions acquire an additional mass term when confined!
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Confinement, chiral symmetry and mass (an intuitive example)
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1980’s: the hunt is on ...

● how to access this physics experimentally? high-energy nuclear collisions!

○ since the 70’s nuclear physicists were already colliding heavy ions

■ Coulomb barrier, shock waves...

■ UNILAC (GSI), Super-Hilac and Bevalac (Berkeley), Synchrophasotron (Dubna)

○ it was realised that nuclear collisions could provide the conditions for QGP formation

○ but to reach Tc higher-energy accelerators were needed → ultrarelativistic AA collisions

● starting from the mid-80’s: high-energy beams of nuclei on fixed target 

○ at the Alternating Gradient Synchrotron (AGS) 

■ at Brookhaven National Laboratory (New York)

■ 𝑠𝑁𝑁 ~ 5 GeV

■ O (1986), Si (1987), Au (1993)

○ at the Super-Proton Synchrotron (SPS)

■ at CERN (Geneva)

■ 𝑠𝑁𝑁 ~ 17 GeV

■ O (1987), S (1987), Pb (1994) 10



Nuclear beam experiments at the SPS (1986 – 2000)

11(from F Fleuret)

● a wide spectrum of observables (and technologies!)



Pb-beam experiments at the SPS (1994 – 2000)

a very wide spectrum of techniques and observables!

● WA97: silicon pixel telescope spectrometer
○ production of strange and multi-strange particles

● WA98: photon and hadron spectrometer 
○ production of photons and hadrons

● NA44: single-arm spectrometer 

○ particle spectra, interferometry, particle correlations

● NA45: electron and hadron spectrometer
○ low mass lepton pairs, hadron production

● NA49: large acceptance TPCs
○ particle spectra, strangeness production, interferometry, event-by-event , …

● NA50: muon spectrometer 
○ high-mass lepton pairs, J/𝜓 production

● NA52: focussing spectrometer
○ strangelet search, particle production

● NA57: silicon pixel telescope spectrometer 
○ production of strange and multi-strange particles 12



Tutorial: 

kinematic variables

13
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or:

Everything You Always Wanted to 

Know About the Pseudorapidity*
(*But Were Afraid to Ask)



Rapidity

● four momentum (c = 1, z coordinate along beam axis) 

● addition of velocities along z:
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→ under a Lorentz transformation with velocity 𝛽 along z :

16

yyyy −=→

)()( yyy
dy

dN
y

yd

dN
−==



3      with  −=  yyyy labcm

(rapidities “add up”) compare: )(' Epp zz  −=

e.g. at SPS :



→ under a Lorentz transformation with velocity 𝛽 along z :
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● in the non-relativistic limit:

● it can be shown that:
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● in the non-relativistic limit:

● it can be shown that:
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Transverse variables

● transverse momentum

● transverse mass
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Pseudorapidity

● in the ultrarelativistic limit: p ~ E → 𝜂 ~ y
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Pseudorapidity

● in the ultrarelativistic limit: p ~ E → 𝜂 ~ y
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Pseudorapidity

● in the ultrarelativistic limit: p ~ E → 𝜂 ~ y
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End of Tutorial
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Two historic predictions...

● QGP phase, if existed, would obviously be very short-lived, how to observe it?

○ is there a memory of the passage through the QGP phase?

○ are there “signatures” of the QGP that we can look for in the final state?

two major proposals made in the 80’s:

● strangeness enhancement (Johann Rafelski and Berndt Müller)
○ enhanced production of strange quarks in the QGP

→ enhancement of strange particles in the final state

● J/𝜓 suppression (Tetsuo Matsui and Helmut Satz)
○ colour field screened at short distances in QGP

→ suppression of production of tightly-bound quarkonium states

25



Strangeness enhancement

● restoration of  symmetry -> increased production of s
○ mass of strange quark in QGP expected to go back to current value

■ mS ~ 150 MeV ~ Tc

→ copious production of ss pairs, mostly by gg fusion 

[J Rafelski: Phys. Rep. 88 (1982) 331]

[J Rafelski and B Müller: Phys.  Rev. Lett. 48 (1982) 1066]

● deconfinement → stronger effect for multi-strange
○ can be built recombining s quarks

→ strangeness enhancement increasing 

with strangeness content

→ expect larger for Ω(𝑠𝑠𝑠) than for Ξ(𝑠𝑠𝑑) than for Λ(𝑠𝑢𝑑)

[P Koch, B Müller and J Rafelski: Phys. Rep. 142 (1986) 167]
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Strangeness enhancement

● restoration of  symmetry -> increased production of s
○ mass of strange quark in QGP expected to go back to current value

■ mS ~ 150 MeV ~ Tc

→ copious production of 𝑠 ҧ𝑠 pairs, mostly by gg fusion 

[J Rafelski: Phys. Rep. 88 (1982) 331]

[J Rafelski and B Müller: Phys.  Rev. Lett. 48 (1982) 1066]

● deconfinement → stronger effect for multi-strange
○ can be built recombining s quarks

→ strangeness enhancement increasing 

with strangeness content

→ expect larger for Ω(𝑠𝑠𝑠) than for Ξ(𝑠𝑠𝑑) than for Λ(𝑠𝑢𝑑)

[P Koch, B Müller and J Rafelski: Phys. Rep. 142 (1986) 167]
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Strange baryons (hyperons)

28

● there are 35 strange baryons listed in the PDG summary tables

● only 6 decay weakly 
(c ~ cm’s → separate decay vertex from event interaction vertex):

 + − (sqq)
 − (ssq)
− (sss)

● only 3 of them can decay into final state with only charged particles 

beam
 p

−

%)64B.R.( → −p

%)100B.R.( → −− 

%)68B.R.( → −− K



WA97/NA57 experiment

● silicon pixel telescope spectrometer

○ first pixel detector in particle physics

(collaboration WA97/NA57 – RD19)

○ strange and multi-strange particles

29



Yield, enhancement

● yield: multiplicity per event

e.g.: 𝑌Ω− = # of − / event in y1 < y < y2

● enhancement: yield per participant relative to yield per participant in pp (p-Be) 

e.g.: − enhancement:

30

ℰΩ =
𝑌Ω/𝑁𝑝𝑎𝑟𝑡 𝑃𝑏−𝑃𝑏

𝑌Ω/𝑁𝑝𝑎𝑟𝑡 𝑝−𝐵𝑒



Strangeness enhancement at the SPS

● WA97/NA57

31

● enhancement relative to p-Be, p-Pb

● increasing with |S|

● up to ~ x 20 for the Ω



Quarkonium suppression

● QGP signature proposed by Matsui and Satz, 1986

● quarkonium: 𝑐𝑐 states (charmonium), 𝑏𝑏 states (bottomonium)

● in the plasma phase the interaction potential is expected to be screened

○ analogous to Debye screening in electromagnetic plasma

○ beyond the Debye screening length 𝜆𝐷

32
[Digal, Petrecki, Satz  PRD 64(2001) 0940150]

𝜆𝐷 depends on T

→ states with radius > 𝜆𝐷 will not bind → suppressed

● J/𝜓,𝜓’, 𝜒𝑐→ 𝑐𝑐 states

● Υ→ 𝑏𝑏 states



Quarkonium suppression

● QGP signature proposed by Matsui and Satz, 1986

● quarkonium: 𝑐𝑐 states (charmonium), 𝑏𝑏 states (bottomonium)

● in the plasma phase the interaction potential is expected to be screened

○ analogous to Debye screening in electromagnetic plasma

○ beyond the Debye screening length 𝜆𝐷
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[Digal, Petrecki, Satz  PRD 64(2001) 0940150]

𝜆𝐷 depends on T

→ states with radius > 𝜆𝐷 will not bind → suppressed

● J/𝜓,𝜓’, 𝜒𝑐→ 𝑐𝑐 states

● Υ→ 𝑏𝑏 states



J/𝜓 suppression at the SPS

● measured/expected

● sets in at  ~ 2.3 GeV/fm3 (b ~ 8 fm)

● (on top of nuclear suppression)

○ due to nuclear absorption effects

○ measured in pA, light ion collisions

○ scaled to Pb-Pb (= 1 in the plot)

34

● NA50: “anomalous” suppression
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Two pillars of year 2000 announcement

● strangeness enhancement, J/𝜓 suppression



... meanwhile, in the US...

● 1978: start of construction of ISABELLE pp collider at Brookhaven (400 GeV)

● 1978: approval of transformation of SPS into 𝑝 ҧ𝑝 collider at CERN (630 GeV)

● 1981-82: problems in production of ISABELLE magnets

● 1983: discovery of W
±

(January) and Z0 (May) bosons at SPS collider

36
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... meanwhile, in the US...

● 1978: start of construction of ISABELLE pp collider at Brookhaven (400 GeV)

● 1978: approval of transformation of SPS into 𝑝 ҧ𝑝 collider at CERN (630 GeV)

● 1981-82: problems in production of ISABELLE magnets

● 1983: discovery of W
±

(January) and Z0 (May) bosons at SPS collider

● July 1983: construction of ISABELLE stopped, project cancelled

● July 1983: NSAC town meeting in Aurora: ISABELLE infrastructure to build a RHIC

○ Relativistic Heavy-Ion Collider

○ (that was quick, but already in 1981, at an ISABELLE workshop in Brookhaven...)
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... meanwhile, in the US...

● 1978: start of construction of ISABELLE pp collider at Brookhaven (400 GeV)

● 1978: approval of transformation of SPS into 𝑝 ҧ𝑝 collider at CERN (630 GeV)

● 1981-82: significant problems in production of ISABELLE magnets

● 1983: discovery of W
±

(January) and Z0 (May) bosons at SPS collider

● Jul 1983: construction of ISABELLE stopped, project cancelled

● Jul 1983: NSAC town meeting in Aurora: ISABELLE infrastructure to build a RHIC

○ Relativistic Heavy-Ion Collider

○ (that was quick, but already in 1981, at an ISABELLE workshop in Brookhaven...)

● 1986: start of heavy-ion collisions at CERN/SPS and Brookhaven/AGS 

● 1987: start of RHIC R&D

● 1991: start of construction

● 2000: first collisions
40



The RHIC experiments
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