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• Monte Carlo methods refer to a wide class 
of computational methods based on 
random sampling to obtain numerical 
approximations

• Stanisław Ulam is considered the father of 
the modern version of Monte Carlo 
methods → while working on nuclear 
weapons (Los Alamos) 

Name comes from his uncle gambling habits 
at the famous Monaco casino

Monte Carlo: history
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Monte Carlo Casino

Principality of Monaco



Monte Carlo: the core idea
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p(x) = probability density 
function (PDF)

Central Limit 
Theorem

Law of Large 
Numbers

In probability theory, with a random variable X following p(x): 

with N →∞

Monte Carlo methods use probability to calculate estimates
Example: 

 

Using MC, our estimate is:



Monte Carlo: the core idea
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• The law of large numbers guarantees that the sampled average converges to the integral 
expected value with N samples→∞ 

• Uncertainty decreases as        → convergence rate quite slow for 1D or 2D integrals,
but no dimension scaling!

Monte Carlo has a significant advantage compared to other integral calculation methods 
(such as trapezoidal rule scaling: N-2/d)



• In MC the system is described by modeled PDFs → equations solutions are not analytical 

• In particle physics MC is used for:
• Event Selection ⇒ algorithms are tested simulating various scenarios and conditions, isolating for example rare 

processes and signals
• Background Estimation ⇒ detailed processes modelling and understanding
• Efficiency Assessment ⇒ different components of the experimental setup, including the detector itself and the 

algorithms used for data analysis, are evaluated ⇒ understanding biases or limitations in the detector data
• Systematic Uncertainty Evaluation ⇒ quantification of systematic uncertainties in physics measurements ⇒ 

changing input parameters and conditions in MC simulations make it possible to identify and quantify sources of 
systematic uncertainty

• Data Validation and Calibration ⇒ comparison with experimental data let us study the accuracy of 
measurements and detectors can be calibrated accordingly making data more accurate

• Particles processes and detectors (geometry + response) are studied: HEP MC simulation

High energy physics application
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Data    +    Theory



Reconstruction

sensor data

Physics 
AnalysisReal particle collisions

Takes sensor data and 
reconstructs state of 
particles right after 

collisions

Data analysis to 
search for physics 

results and 
produce papers

Classical pipeline in a HEP experiment:
Experimental Data

~TB/s

AOD data
(Structured) 
high-level 

physics data for 
query/analysis 

PetaBytes
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Reconstruction

sensor data

Physics 
Analysis

Virtual particle collisions
+ (detector) simulation 

based on physics models
Takes sensor data and 
reconstructs state of 
particles right after 

collisions

Data analysis to 
search for physics 

results and 
produce papers

Classical pipeline in a HEP experiment:
Simulation

AOD data
(Structured) 
high-level 

physics data for 
query/analysis 

PetaBytes
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Effective for

• Detector and systems design
• Reconstruction algorithm calibration
• Efficiency studies of reconstruction algorithms
• Data-taking stress tests with synthetic data
• Background effects estimation
• Radiation studies
• etc



The ALICE Run3 simulation ecosystem

• Simulation ecosystem comprised 
of various components

• Core simulation part:

• Event generation

• Transport simulation

• Digitization

• In addition, MC workflows may 
exercise all of

• Reconstruction, QC, Analysis, etc.

• Individual parts maintained in O2 
and O2Physics repositories
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Event generators
Transport/Detector 

simulation

Detector 
digitisation

Detector and global 
reconstruction 

code

AOD creation

QC Analysis …

Integration and configuration of all parts into coherent 
workflows, done with:

• O2DPG repository (mainly for physics studies on GRID)

• full-system-test (mainly for data taking oriented simulations)

PWG configs

Integration

https://github.com/AliceO2Group/AliceO2
https://github.com/AliceO2Group/O2Physics
https://github.com/AliceO2Group/O2DPG
https://github.com/AliceO2Group/AliceO2/tree/dev/prodtests/full-system-test


Data products in simulation pipeline
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ReconstructionDigitization
Physics 
Analysis

Event-Generation / 
Transport Simulation

•Geometry file

•Kinematics file

•Detector 
response files 
(hits)

•Digits == detector 
sub-timeframes

•Comparable or 
close to raw 
detector output

•Global reconstructed tracks

•Primary + Secondary 
Vertices

•etc.

•AOD (analysis object data)



Data products in simulation pipeline
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ReconstructionDigitization
Physics 
Analysis

Event-Generation / 
Transport Simulation

•Geometry file

•Kinematics file

•Detector 
response files 
(hits)

•Digits == detector 
sub-timeframes

•Comparable or 
close to raw 
detector output

•Global reconstructed tracks

•Primary + Secondary 
Vertices

•etc.

•AOD (analysis object data)

Lectures highlight



• ALICE collects a series of event generators in the AliGenO2 package

• Current available generators:
• DPMJET
• POWHEG
• PYTHIA 8
• ThePEG
• SHERPA
• JETSCAPE
• CRMC
• EPOS4
• EPOS4HQ
• STARlight
• Upcgen
• Graniitti
• nOOn
• EvtGen
• Herwig7

• More in the future (based on users requests) 

Event generation
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- More in the next slides



• Each generator natively produces a specific output, which may or not be compatible 
with our framework

BUT FORTUNATELY…

Most of the recent generators are compatible to standard output formats

An important remark: output
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LHEF HepMC

ROOT
Various conversion tools are available



● It originated from the Les Houches Accords (2001) as a simple, text-based format 
designed to facilitate interoperability between matrix element generators and parton 
shower or experimental frameworks

● Basically XML with extra steps → text-based format primarily designed for 
parton-level (matrix element) event information.

● Stored info: 
○ initial beams
○ event weights
○ cross sections
○ particles

● Allows storage of metadata blocks (<header>, <init>) and individual <event> blocks.

Les Houches Event file
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<LesHouchesEvents version="3.0">
<!--
file generated with POWHEG-BOX-V2
… Info about configuration file here …
<init>
     2212     2212  6.80000E+03  6.80000E+03     -1     -1     -1     -1     -4      1
  4.44226E+08  4.95381E+05  1.00000E+00   1005
</init>
<event>
      5   1005  4.48703E+08  7.22898E+00 -1.00000E+00  2.13591E-01
      21    -1     0     0   504   505  0.000000000E+00  0.000000000E+00  1.127519888E+02  1.127519888E+02  0.000000000E+00  0.00000E+00  9.000E+00
      21    -1     0     0   502   503  0.000000000E+00  0.000000000E+00 -4.149880724E+00  4.149880724E+00  0.000000000E+00  0.00000E+00  9.000E+00
       5     1     1     2   502     0  6.866791512E+00 -3.426695095E+00  1.625574357E+00  9.170608319E+00  4.750000000E+00  0.00000E+00  9.000E+00
      -5     1     1     2     0   505 -6.765662753E-02  9.711072900E-01  2.728102216E+01  2.770856000E+01  4.750000000E+00  0.00000E+00  9.000E+00
      21     1     1     2   504   503 -6.799134885E+00  2.455587805E+00  7.969551155E+01  8.002270121E+01  1.348699152E-06  0.00000E+00  9.000E+00
#rwgt            1           1   543113996.83294153        107813255    22805060           0
</event>
</LesHouchesEvents>

powheg.lhe

https://arxiv.org/abs/hep-ph/0109068


• A flexible, object-oriented C++ library format 
for fully simulated Monte Carlo event records 
after showering and hadronization

• Stores particles, vertices, their relationships, 
and detailed event metadata

• ASCII readable user output

HepMC
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Physicist view 

HepMC :: Version 3.0.0
HepMC :: Ascii3 - START_EVENT_LISTING
W 0
E 0 7 12
U GEV MM
W 1. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000 e +00
A 0 GenCrossSection 2.64422551 e +03 2.64422551 e +03 -1 -1
A 0 GenPdfInfo 11 -11 9.97420767 e -01 9.99999975 e -01 9.18812775 e +01 1.56824725 e +01 2.82148362 e +06 0 0
A 0 alphaQCD 0.129844
A 0 alphaQED 0.007818181
A 0 event_scale 91.88128
A 0 mpi 0
A 0 signal_process_id 221
A 0 signal _process _vertex 0
P 1 0 11 0.0000000000000000 e +00 0.0000000000000000 e +00 4.5999999997161737 e +01 4.6000000000000007 e +01 5.1099999999999995 e -04 4
P 2 1 11 0.0000000000000000 e +00 0.0000000000000000 e +00 4.5881355265109356 e +01 4.5881355265109356 e +01 0.0000000000000000 e +00 61
P 3 1 22 0.0000000000000000 e +00 0.0000000000000000 e +00 1.1864473489064407 e -01 1.1864473489064407 e -01 0.0000000000000000 e +00 1
P 4 0 -11 0.0000000000000000 e +00 0.0000000000000000 e +00 -4.5999999997161737 e +01 4.6000000000000007 e +01 5.1099999999999995 e -04 4
P 5 4 -11 0.0000000000000000 e +00 0.0000000000000000 e +00 -4.5999998855671230 e +01 4.5999998855671230 e +01 0.0000000000000000 e +00 61
P 6 4 22 0.0000000000000000 e +00 0.0000000000000000 e +00 -1.1443287704082650 e -06 1.1443287704082650 e -06 0.0000000000000000 e +00 1
P 7 2 11 0.0000000000000000 e +00 0.0000000000000000 e +00 4.5881355265109356 e +01 4.5881355265109356 e +01 0.0000000000000000 e +00 21

example.he
pmc

Physicist view 

example.hepmc



Pythia 8.2.40 simulated 
e+e− → τ+τ− with initial state 
radiation and w/o hadronisation 
and decays. Event info are 
shown, Ellipses are vertices and 
arrow are particles..

HepMC
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• A flexible, object-oriented C++ library format for 
full simulated Monte Carlo event records after 
showering and hadronization

• Stores particles, vertices, their relationships, and 
detailed event metadata

• ASCII readable user output

• Widely used throughout the HEP community 

• Natively supports LHEF handling and ROOT I/O 
for easier analysis

• Provides a basic event browser →



• ROOT is a C++ data analysis framework 
developed at CERN 

• Stores simulation and experimental data in 
highly compressed, tree-like structures called 
TTrees and TNtuples (float based branches) →

• Supports efficient data handling and analysis of 
large datasets (advanced math functions 
available

• Fully interfaced with operating system (files, 
network, threads…)

• Has in-built graphical tools for TTree browsing 
and fast histogramming

ROOT is the standard at the LHC since 2008
→ ALICE framework is based on it

ROOT

16



• ROOT is a C++ data analysis framework 
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Generators native support
Generator LHEF HepMC ROOT

STARlight No Yes No 

Upcgen No Yes No 

Graniitti Yes Yes Yes 

nOOn No No Yes

EvtGen No No Yes 

Herwig7 Yes Yes No 

Generator LHEF HepMC ROOT

DPMJET No Yes No 

POWHEG Yes No No 

PYTHIA 8 R/W Yes Yes 

ThePEG Yes Yes No 

SHERPA Yes Yes No 

JETSCAPE No Yes No 

CRMC No Yes Yes

EPOS4 No Yes Yes 
However, ROOT format is obtainable 
by all generators via analysis tools 
→ automatised in ALICE framework

18



● Physics phenomena are extremely various ⇒ Different generators (generally 
developed by different groups) specialize in different processes or approximations

● No theory is perfect (so far…) ⇒ different theoretical models and approaches on 
how to simulate parton showers, hadronization, heavy flavor treatment, etc. are 
implemented in each generator

● Some generators are collision or process specific and legacy tools are still used 
as reference

● Validation and cross-checking ⇒ Comparing results from several generators 
reduces systematic uncertainties and ensures robust theoretical predictions

● Computational Performance Trade-offs ⇒ some generators prioritize speed, others 
accuracy (also model based)

Why so many generators?

19



Let’s talk about some models…

Extremely detailed recent review

https://cds.cern.ch/record/2807002/files/2203.11110.pdf


Pythia8
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yo-yo 
process

Lund strings 
fragmentation

● PYTHIA 8 is a general-purpose Monte Carlo event generator written in C++

● Partons hadronization, in the default Monash 2013 tune, is based on the 
Lund string fragmentation model → interaction between two partons occurs
through coloured fields represented by strings 

● A quark-antiquark pair interaction can be 
described by the Cornell potential 

● Increasing the distance between the partons causes
the colour string to stretch → the creation of a new pair will become more favourable 
than further extending the colour string (energy linear relation)

● Both pairs are forced together by the linear potential when distance increases in a 
motion called yo-yo → quarks can recombine with other pairs producing hadrons

with increasing distance

Hooke’s law

https://www.physics.ucla.edu/~huang/Anderson-Lun-Frag.pdf


● The Lund string model alone does not describe the production of some heavy-flavour 
hadrons in pp collisions at the LHC → other theoretical approaches are needed, 
especially for baryons

● PYTHIA uses a leading-colour approximation to trace the colour flow for each event
a. quarks in partonic final state are connected uniquely to a single other parton in the event
b. gluons carry both colour and anticolour → they are connected to two partons by two colour strings

Pythia8 color reconnection (CR)

22

simple junction topologies



Pythia8 enhanced CR
● In pp collisions events with multiple parton 

interactions can occur → all the partonic systems 
generated are to be considered

● Recombination of quarks is allowed both among 
partons arising from MPIs and from beam 
remnants → more string topologies that will 
hadronize

● New complex junctions are available →

● The achievable topologies in an event are ruled by 
the minimisation of the string potential energy 
 

● Different model modes are available by tuning 
various parameters → hadrons production affected

23

arXiv:1505.01681

https://arxiv.org/abs/1505.01681


Second interaction is 
directly colour connected 
to the first one

Pythia8 Angantyr
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Angantyr model

● Angantyr extends PYTHIA8 compatibility to heavy-ion collisions by stacking 
multiple nucleon-nucleon collisions 

● Glauber formalism with Gribov fluctuations for projectile 
nuclei

● Wounded (collision participating) nucleons are tagged with the 
type of collisions

● Pythia machinery is used to generate multiple nucleon-
nucleon sub-collisions

● Multiple scattering between one projectile and two target nucleons →
cannot be simulated directly by Pythia

https://arxiv.org/pdf/1806.10820


Pythia8 Angantyr
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Angantyr model

● Angantyr extends PYTHIA8 compatibility to heavy-ion collisions by stacking 
multiple nucleon-nucleon collisions 

● Glauber formalism with Gribov fluctuations for projectile 
nuclei

● Wounded (collision participating) nucleons are tagged with the 
type of collisions

● Pythia machinery is used to generate multiple nucleon-
nucleon sub-collisions

● Multiple scattering between one projectile and two target nucleons
cannot be simulated directly by Pythia
⇒ single diffraction machinery is modified and the scattering 
is generated as two pp events stacked together → 

Second nucleon is only 
diffractively excited by a 
Pomeron exchange

https://arxiv.org/pdf/1806.10820


● It models soft and hard QCD processes, including multi-parton interactions, string 
formation, and hadronic cascades

● The model is rooted in a Gribov-Regge multiple scattering framework, with parallel 
“primary scatters” and energy sharing between them → earliest stage of collision (t = 0) 
includes many parton-parton scatterings

● The generator provides a hydrodynamical evolution in pp, p–A and heavy-ion collisions 
through parton ladders which show up as flux tubes (strings)

● Possibility to use the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model for 
final-state hadronic transport → system evolution after hydrodynamic freeze-out, the 
system evolves via UrQMD to account for late-stage hadronic rescattering

EPOS4
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Website

https://indico.cern.ch/event/719824/contributions/2994580/attachments/1743476/2821635/2018_Bleicher_CERN_v3.pdf
https://klaus.pages.in2p3.fr/epos4/


● A gg → gg process is useful to understand better 
the concepts:
○ Two pomerons (parton ladders)
○ Interaction between quarks and antiquarks for 

each pomeron
○ Kinky strings can be identified following color 

flows (q1 - g1 - q̅2 ,  q2 - g2 - q̅1, etc.) 
→ 1D color flux tubes

EPOS4: a small example
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Simplified pp scattering, with double-pomeron 
exchange, showing color flow

● Quark-antiquarks pairs are generated when the strings break creating hadrons and 
resonances → similarly jets are generated through segmentation of high-pT hard partons

Is this always valid?



String segments form bulk matter based on pT and local density → corona particles appear as 
hadrons while the core ones provide the initial condition for hydrodynamical evolution
→ they will hadronise later during medium freeze-out

EPOS4: core-corona
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Corona = Blue, Core = Red

● In AA and high multiplicity p-A/pp scatterings at high 
energy, the previous mechanism is not sufficient to 
describe particle production → high string density 
→ segmentation only decay is not possible

● Flux tubes make thermalising bulk matter that expands 
collectively, called core 

● String segments close to the surface of the bulk matter 
or with a high pT can leave the core and hadronise
→ corona region



● The multi-purpose generator is used for e+e-, ep and pp collisions → no heavy-ion 
collisions available

● It provides QCD simulations at next-to-leading order for virtually all SM processes
→ many external libraries fully integrated in the generator

HERWIG7
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Simple scheme leading to hadron decays 
from amplitude evaluation in Herwig7

● Parton showers developed with 
complex mechanism via the coherent 
branching algorithm

● Uses a cluster model (no strings) for 
hadronization → executed after the 
parton showering for quarks and 
gluons to combine

Website

https://herwig.hepforge.org/


mass) → geometric reconnection → quarks in same phase space region based on 
rapidity → two baryonic clusters out of three mesonic ones

3 color reconnection models are implemented 
(and tunable) in HERWIG: 

● Plain reconnection model ⇒ a quark can 
reconnect with all other clusters existing at 
that time, but new generated clusters 
invariant mass sum must be lower (preco)

● Statistical model ⇒ finding a cluster 
configuration with a preferably small colour 
length 

● Baryonic reconnection model ⇒ no reduction 
of the cluster masses (due to large baryonic 

HERWIG7 CR
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Mesonic reconnection

Baryonic reconnection

M
es

on
ic

 



● ALICE geometry for simulation is defined via 
TGeo from ROOT ⇒ used also for 
reconstruction and event display

Library has native visualisation and browsing 
capabilities

Subdetectors teams provide geometries as C++ 
code + parameters (usually in XML/JSON)

● Geometries are used in transport engines 
which take care of particles decays and 
interactions using physics lists

What about transport?

31

● Simulation transport == particles propagation through a virtual representation of detector 
⇒ simulate material interaction ⇒ generate new particles ⇒ deposit energy in the detector 
and create “hits”

Current simulated ALICE central barrel geometry



• FLUKA is a general purpose Monte Carlo tool for particle interaction and transport 
→ mostly used for accelerator design, shielding and radiation protection

• Born in the 60s by J. Ranft → modern version 
released under CERN copyright → latest 
FLUKA 4.5.1 was released on 24/09/2025 

• Usage of fully integrated and highly optimized 
models for em and hadronic interactions

• Source available under restrictive licenses 
→ CERN or institutions with FLUKA license

• Provides an advanced GUI → Flair 

FLUKA
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Resource
Website

https://fluka.cern/documentation/running/flair-gui
https://inspirehep.net/files/e8cb3847561a920327bd8b03bc518617
http://fluka.cern
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• Transport standard in ALICE and in many other HEP experiments

• GEANT4 is a C++ transport engine → previous version was in Fortran

• Completely open source → very large user base in many fields

• Physics processes and interactions are customisable → users can write their own physics 
lists or choose one of the many already available

• Well maintained and supported → latest release 28/04/2025

• Integration with ROOT, Qt, OpenGL for easy visualization and 
geometry creation → supports live event display →

• Natively allows multi-threading

Website

50 MeV e- entering calorimeter

https://geant4.web.cern.ch/


How is everything integrated in ALICE?



Important:

Users without an AliEn certificate will experience a 
limited usage of the next presented tools

Software environment

aliBuild build O2sim --defaults o2

alienv enter O2sim/latest
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/cvmfs/alice.cern.ch/bin/alienv enter O2PDPSuite::MC-prod-2025-v13-1

aliBuild build O2 O2DPG --defaults o2

alienv enter O2/latest,O2DPG/latest

simplest local build (basic generators such as PYTHIA8) 

full local build (all generators with AliGenO2, QC and O2Physics included)

MC stable releases → listed here

https://aliceo2group.github.io/simulation/docs/mc-software-releases/


o2-sim: ALICE Run3 simulation tool
• o2-sim is the particle-detector simulator for ALICE Run3

Implements ALICE detector on top of well known particle-transport 
engines that implement actual physics models and particle transport

• Geant4, Geant3 and FLUKA interchangeably through use of Virtual 
Monte Carlo API

• Main tasks of o2-sim:

• ALICE geometry creation

• Event generation (primary particle generation)

• Simulation of physics interaction of particles with detector material 
(secondary creation, etc.) and transport of particles until they exit 
detector or stop

• Creation of hits (energy deposits) as a pre-stage of detector 
response after particle passage 36

provided by the O2sim package



o2-sim: ALICE Run3 simulation tool
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• New in Run3: scalable multi-core simulation with sub-event parallelism
→ allows to use big servers and obtain results for individual large events quickly

• Important: o2-sim treats events in complete isolation - no timeframe concept (enters 
during digitization)

• o2-sim produces 3 internal log files → in-depth description of each process and debug

o2sim_serverlog o2sim_workerlog0 o2sim_mergerlog



o2-sim: Kinematics output

• Kinematics output (default file o2sim_Kine.root) from 
transport simulation likely most interesting for physics analysis

• contains creation vertices, momenta, etc of primary (generator) and 
secondary (transport) particles created in simulation

• information on physics creation process, provenance (mother-daughter), etc.

• Based on o2::MCTrack class, which is basically a more lightweight TParticle

• For each event, there is one entry of vector<MCTracks> in a 
TTree

• By default, kinematics is pruned (only relevant particles kept)

• In addition, event-level meta-information about each generated 
event is available in a separate file (o2sim_MCHeader.root)

• for instance impact parameter of PbPb collision
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“histogram of production vertex-y of all 
MCtracks (primary and secondary)”



Helper classes to access MC kinematics

• Reading and navigating manually 
through kinematics can be cumbersome 
(“ROOT-IO boilerplate”)

• Offer 2 main utility classes making this 
easy for user

• MCKinematicsReader - Class to easily read and 
retrieve tracks for given event or a Monte Carlo 
label

• MCTrackNavigator - Class to navigate through 
mother-daughter tree of MC tracks and to query 
physics properties
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👉 Example: 
Run/SimExamples/Jet_Embedding_Pythia8

using o2::steer;
using o2;

// access kinematics file with simulation prefix o2sim
MCKinematicsReader reader("o2sim",MCKinematicsReader::Mode::kMCKine);

// get all Monte Carlo tracks for this event
std::vector<MCTrack> const& tracks = reader.getTracks(event);

for (auto& t : tracks) {
   // analyse tracks; fetch mother track of each track (in the pool of all tracks)
   auto mother = o2::mcutil::MCTrackNavigator::getMother(t, tracks);
   if (mother) {
      std::cout << "This track has a mother\n";
   }
   // fetch the (backward first) primary particle from which this track derives
   auto primary = o2::mcutil::MCTrackNavigator::getFirstPrimary(t, tracks);
}

“Read all Monte Carlo tracks from stored 
kinematics file for event id 1. Then loop 
over all tracks and determine the direct 

mother particle and the primary ancestor in 
each case”

https://github.com/AliceO2Group/AliceO2/blob/dev/Steer/include/Steer/MCKinematicsReader.h
https://github.com/AliceO2Group/AliceO2/blob/dev/DataFormats/simulation/include/SimulationDataFormat/MCUtils.h
https://github.com/AliceO2Group/AliceO2/blob/dev/run/SimExamples/Jet_Embedding_Pythia8/


More in the next lecture


