
Monte Carlo simulations
in High Energy Physics
Marco Giacalone

06.11.2025

Lecture 1

1st ALICE Experiment and Heavy-Ion Physics School - Shanghai
Photo: @zhangkaiyv on unsplash.com

• Monte Carlo methods refer to a wide class
of computational methods based on
random sampling to obtain numerical
approximations

• Stanisław Ulam is considered the father of
the modern version of Monte Carlo
methods → while working on nuclear
weapons (Los Alamos)

Name comes from his uncle gambling habits
at the famous Monaco casino

Monte Carlo: history

2/2689

Photo: @rishi_1 on unsplash.com

Monte Carlo Casino

Principality of Monaco

Monte Carlo: the core idea

3

p(x) = probability density
function (PDF)

Central Limit
Theorem

Law of Large
Numbers

In probability theory, with a random variable X following p(x):

with N →∞

Monte Carlo methods use probability to calculate estimates
Example:

Using MC, our estimate is:

Monte Carlo: the core idea

4

• The law of large numbers guarantees that the sampled average converges to the integral
expected value with N samples→∞

• Uncertainty decreases as → convergence rate quite slow for 1D or 2D integrals,
but no dimension scaling!

Monte Carlo has a significant advantage compared to other integral calculation methods
(such as trapezoidal rule scaling: N-2/d)

• In MC the system is described by modeled PDFs → equations solutions are not analytical

• In particle physics MC is used for:
• Event Selection ⇒ algorithms are tested simulating various scenarios and conditions, isolating for example rare

processes and signals
• Background Estimation ⇒ detailed processes modelling and understanding
• Efficiency Assessment ⇒ different components of the experimental setup, including the detector itself and the

algorithms used for data analysis, are evaluated ⇒ understanding biases or limitations in the detector data
• Systematic Uncertainty Evaluation ⇒ quantification of systematic uncertainties in physics measurements ⇒

changing input parameters and conditions in MC simulations make it possible to identify and quantify sources of
systematic uncertainty

• Data Validation and Calibration ⇒ comparison with experimental data let us study the accuracy of
measurements and detectors can be calibrated accordingly making data more accurate

• Particles processes and detectors (geometry + response) are studied: HEP MC simulation

High energy physics application

5

Data + Theory

Reconstruction

sensor data

Physics
AnalysisReal particle collisions

Takes sensor data and
reconstructs state of
particles right after

collisions

Data analysis to
search for physics

results and
produce papers

Classical pipeline in a HEP experiment:
Experimental Data

~TB/s

AOD data
(Structured)
high-level

physics data for
query/analysis

PetaBytes

6

Reconstruction

sensor data

Physics
Analysis

Virtual particle collisions
+ (detector) simulation

based on physics models
Takes sensor data and
reconstructs state of
particles right after

collisions

Data analysis to
search for physics

results and
produce papers

Classical pipeline in a HEP experiment:
Simulation

AOD data
(Structured)
high-level

physics data for
query/analysis

PetaBytes

7

Effective for

• Detector and systems design
• Reconstruction algorithm calibration
• Efficiency studies of reconstruction algorithms
• Data-taking stress tests with synthetic data
• Background effects estimation
• Radiation studies
• etc

The ALICE Run3 simulation ecosystem

• Simulation ecosystem comprised
of various components

• Core simulation part:

• Event generation

• Transport simulation

• Digitization

• In addition, MC workflows may
exercise all of

• Reconstruction, QC, Analysis, etc.

• Individual parts maintained in O2
and O2Physics repositories

8

Event generators
Transport/Detector

simulation

Detector
digitisation

Detector and global
reconstruction

code

AOD creation

QC Analysis …

Integration and configuration of all parts into coherent
workflows, done with:

• O2DPG repository (mainly for physics studies on GRID)

• full-system-test (mainly for data taking oriented simulations)

PWG configs

Integration

https://github.com/AliceO2Group/AliceO2
https://github.com/AliceO2Group/O2Physics
https://github.com/AliceO2Group/O2DPG
https://github.com/AliceO2Group/AliceO2/tree/dev/prodtests/full-system-test

Data products in simulation pipeline

9

ReconstructionDigitization
Physics
Analysis

Event-Generation /
Transport Simulation

•Geometry file

•Kinematics file

•Detector
response files
(hits)

•Digits == detector
sub-timeframes

•Comparable or
close to raw
detector output

•Global reconstructed tracks

•Primary + Secondary
Vertices

•etc.

•AOD (analysis object data)

Data products in simulation pipeline

10

ReconstructionDigitization
Physics
Analysis

Event-Generation /
Transport Simulation

•Geometry file

•Kinematics file

•Detector
response files
(hits)

•Digits == detector
sub-timeframes

•Comparable or
close to raw
detector output

•Global reconstructed tracks

•Primary + Secondary
Vertices

•etc.

•AOD (analysis object data)

Lectures highlight

• ALICE collects a series of event generators in the AliGenO2 package

• Current available generators:
• DPMJET
• POWHEG
• PYTHIA 8
• ThePEG
• SHERPA
• JETSCAPE
• CRMC
• EPOS4
• EPOS4HQ
• STARlight
• Upcgen
• Graniitti
• nOOn
• EvtGen
• Herwig7

• More in the future (based on users requests)

Event generation

11

- More in the next slides

• Each generator natively produces a specific output, which may or not be compatible
with our framework

BUT FORTUNATELY…

Most of the recent generators are compatible to standard output formats

An important remark: output

12

LHEF HepMC

ROOT
Various conversion tools are available

● It originated from the Les Houches Accords (2001) as a simple, text-based format
designed to facilitate interoperability between matrix element generators and parton
shower or experimental frameworks

● Basically XML with extra steps → text-based format primarily designed for
parton-level (matrix element) event information.

● Stored info:
○ initial beams
○ event weights
○ cross sections
○ particles

● Allows storage of metadata blocks (<header>, <init>) and individual <event> blocks.

Les Houches Event file

13

<LesHouchesEvents version="3.0">
<!--
file generated with POWHEG-BOX-V2
… Info about configuration file here …
<init>
 2212 2212 6.80000E+03 6.80000E+03 -1 -1 -1 -1 -4 1
 4.44226E+08 4.95381E+05 1.00000E+00 1005
</init>
<event>
 5 1005 4.48703E+08 7.22898E+00 -1.00000E+00 2.13591E-01
 21 -1 0 0 504 505 0.000000000E+00 0.000000000E+00 1.127519888E+02 1.127519888E+02 0.000000000E+00 0.00000E+00 9.000E+00
 21 -1 0 0 502 503 0.000000000E+00 0.000000000E+00 -4.149880724E+00 4.149880724E+00 0.000000000E+00 0.00000E+00 9.000E+00
 5 1 1 2 502 0 6.866791512E+00 -3.426695095E+00 1.625574357E+00 9.170608319E+00 4.750000000E+00 0.00000E+00 9.000E+00
 -5 1 1 2 0 505 -6.765662753E-02 9.711072900E-01 2.728102216E+01 2.770856000E+01 4.750000000E+00 0.00000E+00 9.000E+00
 21 1 1 2 504 503 -6.799134885E+00 2.455587805E+00 7.969551155E+01 8.002270121E+01 1.348699152E-06 0.00000E+00 9.000E+00
#rwgt 1 1 543113996.83294153 107813255 22805060 0
</event>
</LesHouchesEvents>

powheg.lhe

https://arxiv.org/abs/hep-ph/0109068

• A flexible, object-oriented C++ library format
for fully simulated Monte Carlo event records
after showering and hadronization

• Stores particles, vertices, their relationships,
and detailed event metadata

• ASCII readable user output

HepMC

14

Physicist view

HepMC :: Version 3.0.0
HepMC :: Ascii3 - START_EVENT_LISTING
W 0
E 0 7 12
U GEV MM
W 1. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000 e +00
A 0 GenCrossSection 2.64422551 e +03 2.64422551 e +03 -1 -1
A 0 GenPdfInfo 11 -11 9.97420767 e -01 9.99999975 e -01 9.18812775 e +01 1.56824725 e +01 2.82148362 e +06 0 0
A 0 alphaQCD 0.129844
A 0 alphaQED 0.007818181
A 0 event_scale 91.88128
A 0 mpi 0
A 0 signal_process_id 221
A 0 signal _process _vertex 0
P 1 0 11 0.0000000000000000 e +00 0.0000000000000000 e +00 4.5999999997161737 e +01 4.6000000000000007 e +01 5.1099999999999995 e -04 4
P 2 1 11 0.0000000000000000 e +00 0.0000000000000000 e +00 4.5881355265109356 e +01 4.5881355265109356 e +01 0.0000000000000000 e +00 61
P 3 1 22 0.0000000000000000 e +00 0.0000000000000000 e +00 1.1864473489064407 e -01 1.1864473489064407 e -01 0.0000000000000000 e +00 1
P 4 0 -11 0.0000000000000000 e +00 0.0000000000000000 e +00 -4.5999999997161737 e +01 4.6000000000000007 e +01 5.1099999999999995 e -04 4
P 5 4 -11 0.0000000000000000 e +00 0.0000000000000000 e +00 -4.5999998855671230 e +01 4.5999998855671230 e +01 0.0000000000000000 e +00 61
P 6 4 22 0.0000000000000000 e +00 0.0000000000000000 e +00 -1.1443287704082650 e -06 1.1443287704082650 e -06 0.0000000000000000 e +00 1
P 7 2 11 0.0000000000000000 e +00 0.0000000000000000 e +00 4.5881355265109356 e +01 4.5881355265109356 e +01 0.0000000000000000 e +00 21

example.he
pmc

Physicist view

example.hepmc

Pythia 8.2.40 simulated
e+e− → τ+τ− with initial state
radiation and w/o hadronisation
and decays. Event info are
shown, Ellipses are vertices and
arrow are particles..

HepMC

15

• A flexible, object-oriented C++ library format for
full simulated Monte Carlo event records after
showering and hadronization

• Stores particles, vertices, their relationships, and
detailed event metadata

• ASCII readable user output

• Widely used throughout the HEP community

• Natively supports LHEF handling and ROOT I/O
for easier analysis

• Provides a basic event browser →

• ROOT is a C++ data analysis framework
developed at CERN

• Stores simulation and experimental data in
highly compressed, tree-like structures called
TTrees and TNtuples (float based branches) →

• Supports efficient data handling and analysis of
large datasets (advanced math functions
available

• Fully interfaced with operating system (files,
network, threads…)

• Has in-built graphical tools for TTree browsing
and fast histogramming

ROOT is the standard at the LHC since 2008
→ ALICE framework is based on it

ROOT

16

• ROOT is a C++ data analysis framework
developed at CERN

• Stores simulation and experimental data in
highly compressed, tree-like structures called
TTrees and TNtuples (float based branches)

• Supports efficient data handling and analysis of
large datasets (advanced math functions
available

• Fully interfaced with operating system (files,
network, threads…)

• Has in-built graphical tools for TTree browsing
and fast histogramming →

ROOT is the standard at the LHC since 2008
→ ALICE framework is based on it

ROOT

17

Generators native support
Generator LHEF HepMC ROOT

STARlight No Yes No

Upcgen No Yes No

Graniitti Yes Yes Yes

nOOn No No Yes

EvtGen No No Yes

Herwig7 Yes Yes No

Generator LHEF HepMC ROOT

DPMJET No Yes No

POWHEG Yes No No

PYTHIA 8 R/W Yes Yes

ThePEG Yes Yes No

SHERPA Yes Yes No

JETSCAPE No Yes No

CRMC No Yes Yes

EPOS4 No Yes Yes
However, ROOT format is obtainable
by all generators via analysis tools
→ automatised in ALICE framework

18

● Physics phenomena are extremely various ⇒ Different generators (generally
developed by different groups) specialize in different processes or approximations

● No theory is perfect (so far…) ⇒ different theoretical models and approaches on
how to simulate parton showers, hadronization, heavy flavor treatment, etc. are
implemented in each generator

● Some generators are collision or process specific and legacy tools are still used
as reference

● Validation and cross-checking ⇒ Comparing results from several generators
reduces systematic uncertainties and ensures robust theoretical predictions

● Computational Performance Trade-offs ⇒ some generators prioritize speed, others
accuracy (also model based)

Why so many generators?

19

Let’s talk about some models…

Extremely detailed recent review

https://cds.cern.ch/record/2807002/files/2203.11110.pdf

Pythia8

21

yo-yo
process

Lund strings
fragmentation

● PYTHIA 8 is a general-purpose Monte Carlo event generator written in C++

● Partons hadronization, in the default Monash 2013 tune, is based on the
Lund string fragmentation model → interaction between two partons occurs
through coloured fields represented by strings

● A quark-antiquark pair interaction can be
described by the Cornell potential

● Increasing the distance between the partons causes
the colour string to stretch → the creation of a new pair will become more favourable
than further extending the colour string (energy linear relation)

● Both pairs are forced together by the linear potential when distance increases in a
motion called yo-yo → quarks can recombine with other pairs producing hadrons

with increasing distance

Hooke’s law

https://www.physics.ucla.edu/~huang/Anderson-Lun-Frag.pdf

● The Lund string model alone does not describe the production of some heavy-flavour
hadrons in pp collisions at the LHC → other theoretical approaches are needed,
especially for baryons

● PYTHIA uses a leading-colour approximation to trace the colour flow for each event
a. quarks in partonic final state are connected uniquely to a single other parton in the event
b. gluons carry both colour and anticolour → they are connected to two partons by two colour strings

Pythia8 color reconnection (CR)

22

simple junction topologies

Pythia8 enhanced CR
● In pp collisions events with multiple parton

interactions can occur → all the partonic systems
generated are to be considered

● Recombination of quarks is allowed both among
partons arising from MPIs and from beam
remnants → more string topologies that will
hadronize

● New complex junctions are available →

● The achievable topologies in an event are ruled by
the minimisation of the string potential energy

● Different model modes are available by tuning
various parameters → hadrons production affected

23

arXiv:1505.01681

https://arxiv.org/abs/1505.01681

Second interaction is
directly colour connected
to the first one

Pythia8 Angantyr

24

Angantyr model

● Angantyr extends PYTHIA8 compatibility to heavy-ion collisions by stacking
multiple nucleon-nucleon collisions

● Glauber formalism with Gribov fluctuations for projectile
nuclei

● Wounded (collision participating) nucleons are tagged with the
type of collisions

● Pythia machinery is used to generate multiple nucleon-
nucleon sub-collisions

● Multiple scattering between one projectile and two target nucleons →
cannot be simulated directly by Pythia

https://arxiv.org/pdf/1806.10820

Pythia8 Angantyr

25

Angantyr model

● Angantyr extends PYTHIA8 compatibility to heavy-ion collisions by stacking
multiple nucleon-nucleon collisions

● Glauber formalism with Gribov fluctuations for projectile
nuclei

● Wounded (collision participating) nucleons are tagged with the
type of collisions

● Pythia machinery is used to generate multiple nucleon-
nucleon sub-collisions

● Multiple scattering between one projectile and two target nucleons
cannot be simulated directly by Pythia
⇒ single diffraction machinery is modified and the scattering
is generated as two pp events stacked together →

Second nucleon is only
diffractively excited by a
Pomeron exchange

https://arxiv.org/pdf/1806.10820

● It models soft and hard QCD processes, including multi-parton interactions, string
formation, and hadronic cascades

● The model is rooted in a Gribov-Regge multiple scattering framework, with parallel
“primary scatters” and energy sharing between them → earliest stage of collision (t = 0)
includes many parton-parton scatterings

● The generator provides a hydrodynamical evolution in pp, p–A and heavy-ion collisions
through parton ladders which show up as flux tubes (strings)

● Possibility to use the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model for
final-state hadronic transport → system evolution after hydrodynamic freeze-out, the
system evolves via UrQMD to account for late-stage hadronic rescattering

EPOS4

26

Website

https://indico.cern.ch/event/719824/contributions/2994580/attachments/1743476/2821635/2018_Bleicher_CERN_v3.pdf
https://klaus.pages.in2p3.fr/epos4/

● A gg → gg process is useful to understand better
the concepts:
○ Two pomerons (parton ladders)
○ Interaction between quarks and antiquarks for

each pomeron
○ Kinky strings can be identified following color

flows (q1 - g1 - q̅2 , q2 - g2 - q̅1, etc.)
→ 1D color flux tubes

EPOS4: a small example

27

Simplified pp scattering, with double-pomeron
exchange, showing color flow

● Quark-antiquarks pairs are generated when the strings break creating hadrons and
resonances → similarly jets are generated through segmentation of high-pT hard partons

Is this always valid?

String segments form bulk matter based on pT and local density → corona particles appear as
hadrons while the core ones provide the initial condition for hydrodynamical evolution
→ they will hadronise later during medium freeze-out

EPOS4: core-corona

28

Corona = Blue, Core = Red

● In AA and high multiplicity p-A/pp scatterings at high
energy, the previous mechanism is not sufficient to
describe particle production → high string density
→ segmentation only decay is not possible

● Flux tubes make thermalising bulk matter that expands
collectively, called core

● String segments close to the surface of the bulk matter
or with a high pT can leave the core and hadronise
→ corona region

● The multi-purpose generator is used for e+e-, ep and pp collisions → no heavy-ion
collisions available

● It provides QCD simulations at next-to-leading order for virtually all SM processes
→ many external libraries fully integrated in the generator

HERWIG7

29

Simple scheme leading to hadron decays
from amplitude evaluation in Herwig7

● Parton showers developed with
complex mechanism via the coherent
branching algorithm

● Uses a cluster model (no strings) for
hadronization → executed after the
parton showering for quarks and
gluons to combine

Website

https://herwig.hepforge.org/

mass) → geometric reconnection → quarks in same phase space region based on
rapidity → two baryonic clusters out of three mesonic ones

3 color reconnection models are implemented
(and tunable) in HERWIG:

● Plain reconnection model ⇒ a quark can
reconnect with all other clusters existing at
that time, but new generated clusters
invariant mass sum must be lower (preco)

● Statistical model ⇒ finding a cluster
configuration with a preferably small colour
length

● Baryonic reconnection model ⇒ no reduction
of the cluster masses (due to large baryonic

HERWIG7 CR

30

Mesonic reconnection

Baryonic reconnection

M
es

on
ic

● ALICE geometry for simulation is defined via
TGeo from ROOT ⇒ used also for
reconstruction and event display

Library has native visualisation and browsing
capabilities

Subdetectors teams provide geometries as C++
code + parameters (usually in XML/JSON)

● Geometries are used in transport engines
which take care of particles decays and
interactions using physics lists

What about transport?

31

● Simulation transport == particles propagation through a virtual representation of detector
⇒ simulate material interaction ⇒ generate new particles ⇒ deposit energy in the detector
and create “hits”

Current simulated ALICE central barrel geometry

• FLUKA is a general purpose Monte Carlo tool for particle interaction and transport
→ mostly used for accelerator design, shielding and radiation protection

• Born in the 60s by J. Ranft → modern version
released under CERN copyright → latest
FLUKA 4.5.1 was released on 24/09/2025

• Usage of fully integrated and highly optimized
models for em and hadronic interactions

• Source available under restrictive licenses
→ CERN or institutions with FLUKA license

• Provides an advanced GUI → Flair

FLUKA

32

Resource
Website

https://fluka.cern/documentation/running/flair-gui
https://inspirehep.net/files/e8cb3847561a920327bd8b03bc518617
http://fluka.cern

33

• Transport standard in ALICE and in many other HEP experiments

• GEANT4 is a C++ transport engine → previous version was in Fortran

• Completely open source → very large user base in many fields

• Physics processes and interactions are customisable → users can write their own physics
lists or choose one of the many already available

• Well maintained and supported → latest release 28/04/2025

• Integration with ROOT, Qt, OpenGL for easy visualization and
geometry creation → supports live event display →

• Natively allows multi-threading

Website

50 MeV e- entering calorimeter

https://geant4.web.cern.ch/

How is everything integrated in ALICE?

Important:

Users without an AliEn certificate will experience a
limited usage of the next presented tools

Software environment

aliBuild build O2sim --defaults o2

alienv enter O2sim/latest

35

/cvmfs/alice.cern.ch/bin/alienv enter O2PDPSuite::MC-prod-2025-v13-1

aliBuild build O2 O2DPG --defaults o2

alienv enter O2/latest,O2DPG/latest

simplest local build (basic generators such as PYTHIA8)

full local build (all generators with AliGenO2, QC and O2Physics included)

MC stable releases → listed here

https://aliceo2group.github.io/simulation/docs/mc-software-releases/

o2-sim: ALICE Run3 simulation tool
• o2-sim is the particle-detector simulator for ALICE Run3

Implements ALICE detector on top of well known particle-transport
engines that implement actual physics models and particle transport

• Geant4, Geant3 and FLUKA interchangeably through use of Virtual
Monte Carlo API

• Main tasks of o2-sim:

• ALICE geometry creation

• Event generation (primary particle generation)

• Simulation of physics interaction of particles with detector material
(secondary creation, etc.) and transport of particles until they exit
detector or stop

• Creation of hits (energy deposits) as a pre-stage of detector
response after particle passage 36

provided by the O2sim package

o2-sim: ALICE Run3 simulation tool

37

• New in Run3: scalable multi-core simulation with sub-event parallelism
→ allows to use big servers and obtain results for individual large events quickly

• Important: o2-sim treats events in complete isolation - no timeframe concept (enters
during digitization)

• o2-sim produces 3 internal log files → in-depth description of each process and debug

o2sim_serverlog o2sim_workerlog0 o2sim_mergerlog

o2-sim: Kinematics output

• Kinematics output (default file o2sim_Kine.root) from
transport simulation likely most interesting for physics analysis

• contains creation vertices, momenta, etc of primary (generator) and
secondary (transport) particles created in simulation

• information on physics creation process, provenance (mother-daughter), etc.

• Based on o2::MCTrack class, which is basically a more lightweight TParticle

• For each event, there is one entry of vector<MCTracks> in a
TTree

• By default, kinematics is pruned (only relevant particles kept)

• In addition, event-level meta-information about each generated
event is available in a separate file (o2sim_MCHeader.root)

• for instance impact parameter of PbPb collision

38

“histogram of production vertex-y of all
MCtracks (primary and secondary)”

Helper classes to access MC kinematics

• Reading and navigating manually
through kinematics can be cumbersome
(“ROOT-IO boilerplate”)

• Offer 2 main utility classes making this
easy for user

• MCKinematicsReader - Class to easily read and
retrieve tracks for given event or a Monte Carlo
label

• MCTrackNavigator - Class to navigate through
mother-daughter tree of MC tracks and to query
physics properties

39

👉 Example:
Run/SimExamples/Jet_Embedding_Pythia8

using o2::steer;
using o2;

// access kinematics file with simulation prefix o2sim
MCKinematicsReader reader("o2sim",MCKinematicsReader::Mode::kMCKine);

// get all Monte Carlo tracks for this event
std::vector<MCTrack> const& tracks = reader.getTracks(event);

for (auto& t : tracks) {
 // analyse tracks; fetch mother track of each track (in the pool of all tracks)
 auto mother = o2::mcutil::MCTrackNavigator::getMother(t, tracks);
 if (mother) {
 std::cout << "This track has a mother\n";
 }
 // fetch the (backward first) primary particle from which this track derives
 auto primary = o2::mcutil::MCTrackNavigator::getFirstPrimary(t, tracks);
}

“Read all Monte Carlo tracks from stored
kinematics file for event id 1. Then loop
over all tracks and determine the direct

mother particle and the primary ancestor in
each case”

https://github.com/AliceO2Group/AliceO2/blob/dev/Steer/include/Steer/MCKinematicsReader.h
https://github.com/AliceO2Group/AliceO2/blob/dev/DataFormats/simulation/include/SimulationDataFormat/MCUtils.h
https://github.com/AliceO2Group/AliceO2/blob/dev/run/SimExamples/Jet_Embedding_Pythia8/

More in the next lecture

