
Monte Carlo simulations
in High Energy Physics
Marco Giacalone

06.11.2025

Lecture 2

1st ALICE Experiment and Heavy-Ion Physics School - Shanghai

Software environment
reminder

aliBuild build O2sim --defaults o2

alienv enter O2sim/latest

2

/cvmfs/alice.cern.ch/bin/alienv enter O2PDPSuite::MC-prod-2025-v13-1

aliBuild build O2 O2DPG --defaults o2

alienv enter O2/latest,O2DPG/latest

simplest local build (basic generators such as PYTHIA8)

full local build (all generators with AliGenO2, QC and O2Physics included)

MC stable releases → listed here

Important:

Users without an AliEn certificate will experience a
limited usage of the next presented tools

https://aliceo2group.github.io/simulation/docs/mc-software-releases/

Integrated workflows: O2DPG MC

• In order to produce simulated AODs, we need to go beyond
o2-sim and event generation and run the complete
algorithmic pipeline including digitization and reconstruction
steps

• This is a complex system, consisting of many executables or
tasks, requiring consistent application and propagation of
settings/configuration to work together

• Example: full-system-test for data taking

• hard to get right on your own → use a maintained setup !

• For ALICE Run3, the official production system targeting GRID
productions is O2DPG repo (MC part)

• O2DPG also contains scripts/setup for data taking (DATA part)
3

“Interplay of algorithms is a complex
system (DPL topology)”

https://github.com/AliceO2Group/O2DPG

O2DPG …

• provides authoritative setup for official MC
productions for ALICE-Run3 and a runtime to execute
MC jobs on GRID

• integrates all relevant processing tasks into a
coherent and consistent environment to have a
working pipeline from event generation to AOD and
beyond

• maintains PWG generator configurations as
versioned code

• performs testing / CI on PWG generator configurations

4

https://github.com/AliceO2Group/O2DPG

Important directories:

• MC/bin (workflow creation/execution)
• MC/run (PWG specific run scripts)
• MC/config (PWG specific generator configs)

http://www.apple.com/uk
https://github.com/AliceO2Group/O2DPG

Fundamentals of O2DPG-MC

• Running a MC job, is a two-fold process to decouple configuration logic from execution logic

1. Create a valid/configured description of a MC job == “workflow”

5

Workflow creator

Creates a coherent, integrated MC
workflow in directed-acyclic-graph
(DAG) form, described as a JSON,
modelling the dependency of tasks

Configures the MC workflow as
function of important user
parameters:
• collision system
• generators
• interaction rate
• number of timeframes

workflow.json

Simple example…

Fundamentals of O2DPG-MC

• Running a MC job, is a two-fold process to decouple configuration logic from execution logic

1. Create a valid/configured description of a MC job == “workflow”

6

Workflow creator

Creates a coherent, integrated MC
workflow in directed-acyclic-graph
(DAG) form, described as a JSON,
modelling the dependency of tasks

Configures the MC workflow as
function of important user
parameters
• Collision system, generators,

interaction rate, number of
timeframes

workflow.json

Real example workflow with just
2 timeframes is much larger…

Fundamentals of O2DPG-MC

• Running a MC job, is a two-fold process to decouple configuration logic from execution logic

1. Create a valid/configured description of a MC job == “workflow”

2. Run the MC job with a dynamic graph scheduler

7

Workflow creator Workflow executor Output (AOD)

Takes care of running the DAG workflow on
multi-core machines similar to a dynamic
“build” tool.

Launches tasks when they can be launched:
• Targeting high parallelism and CPU

utilisation
• Respect resource constraints (tries not to

overload the system)

In principle a universal tool, not specific to MCworkflow.json

Creates a coherent, integrated MC
workflow in directed-acyclic-graph
(DAG) form, described as a JSON,
modelling the dependency of tasks

Configures the MC workflow as
function of important user
parameters:
• collision system
• generators
• interaction rate
• number of timeframes

O2DPG-MC workflows: Requirements
• Valid AliEn-tokens are required to run (to access CCDB objects)

8

The Condition and Calibration Data Base (CCDB) is a
ROOT file used to store calibration and alignment data
(centrality, TPC splines, calibration maps for
space-charge distortions, …)

O2DPG-MC workflows: Requirements
• Valid AliEn-tokens are required to run (to access CCDB objects)

• Experts may circumvent by using CCDB snapshots

• The O2DPG MC workflows are supposed to run in an 8-CPU core with 16GB RAM
environment reflecting the default resources on the GRID

• This is also the requirement that you should fulfill when running locally on your laptop

• This translates into some defaults which are put in the workflow creation / execution
• Transport simulation will use 8 workers

• TPC + TRD digitisation 8 threads

• The workflow runner will assume to have 8-cores available

• In turn, O2DPG MC workloads may lead to problems when run on hardware with less
resources
• But with a bit a tuning/adjustment it might be possible to run

9

O2DPG-MC step 1: workflow creation
• ALICE Run3 MC workflow creation done by script

O2DPG/MC/bin/o2dpg_sim_workflow.py

• Configures the MC workflow as function of important (user) parameters (collision system,
generators, interaction rate, number of timeframes, transport engine, etc.)
• `o2dpg_sim_workflow.py --help` →documentation with all available options

10

“Generate an ALICE-Run3 Monte Carlo
workflow for a 5 timeframe simulation, with

2000 events per timeframe, at interaction rate
of 500kHz …. for 14TeV pp collisions using

Pythia8 that has special process cdiff
enabled…”

${O2DPG_ROOT}/MC/bin/o2dpg_sim_workflow.py -eCM 14000 -col pp
 -gen pythia8 -proc cdiff

 -tf 5 —ns 2000
 -interactionRate 500000

 -run 302000

👉 Some examples here; 👉 docs here

☝ Important options:

-gen, -tf, -n, -eCM, -interactionRate, -run, -col
 Optionally: -field, -seed, -proc

https://gitlab.cern.ch/aliperf/alibibenchtasks
https://aliceo2group.github.io/simulation/docs/o2dpgworkflow/

Workflow creation: Run numbers

• The use of a run number is mandatory as it will
be used to determine a timestamp needed to
fetch conditions from CCDB

• So run numbers should be used even for
non-data-taking anchored simulations

• A list of pre-defined run numbers for MC has
been documented here:
https://twiki.cern.ch/twiki/bin/view/ALICE/O2D
PGMCSamplingSchema

• For example, for a PbPb simulation with field
-0.5T, a run number of 310000 can be used

• Should in principle fetch CCDB objects good
for PbPb

11

https://twiki.cern.ch/twiki/bin/view/ALICE/O2DPGMCSamplingSchema
https://twiki.cern.ch/twiki/bin/view/ALICE/O2DPGMCSamplingSchema

Workflow creation: Generator configuration
• Custom configurations can be specified to the generation workflow thanks to .ini files

12

o2dpg_sim_workflow.py -gen pythia8 -ini <path/to/config.ini>

• Documentation
• Official configuration folder

• They contain different sections for generator configurations but additional triggers for the produced
particles can be added

• Official configurations can be found by default in

and they are tested by a CI when modifications are requested via PR or new configurations are
added

• Configurations folder is linked to the
O2DPG_MC_CONFIG_ROOT environment variable

Local configurations can be used, but also newer
configurations can be tested with older O2DPG
build and viceversa

O2DPG/MC/config/<PWG>/ini/<config>.ini

[GeneratorPythia8]
config =
${O2DPG_MC_CONFIG_ROOT}/MC/config/common/pythia8/generato
r/pythia8_hf.cfg
hooksFileName =
${O2DPG_MC_CONFIG_ROOT}/MC/config/PWGHF/pythia8/hooks/pyt
hia8_userhooks_qqbar.C
hooksFuncName = pythia8_userhooks_ccbar(-4.3,-2.3)

Snippet from PWGDQ configuration

Recommended way

https://aliceo2group.github.io/simulation/docs/generators/generatorconfig.html
http://o2dpg/MC/config/%3CPWG%3E/ini/%3Cconfig%3E.ini
https://github.com/AliceO2Group/O2DPG/blob/master/MC/config/PWGDQ/ini/GeneratorHF_ccbarToMuonsSemileptonic_fwdy.ini

O2DPG-MC step 2: workflow execution
• Workflow runner/executor evaluates/builds a

DAG workflow on a compute node

• Minimally, it takes the workflow file and a target
as input

13

“Execute workflow up to
aod task (assuming 8-core

CPU config)”

${O2DPG_ROOT}/MC/bin/o2dpg_workflow_runner.py -f workflow.json -tt aod

• Convert DAG to simple shell script
which could be run standalone

o2dpg_workflow_runner.py -f workflow.json -tt aod
--produce-script my_script.sh

“Create a simple shell script which can run everything
sequentially up to AOD stage”

• … many more useful features

• As usual, o2dpg_workflow_runner.py --help, lists possible options

• Checkpointing and incremental build o2dpg_workflow_runner.py -f workflow.json -tt digi
o2dpg_workflow_runner.py -f workflow.json -tt aod

“First execute until digitization … and then continue until AOD (not
doing tasks again which are already finished!)

G
o

od
 t

o
 k

no
w

• Simple mono-PDG particle generator
implemented in O2

• Produces particles with uniform distributions in
(p, η, ϕ) → 3D box shape

100 events with 1 pion each will be generated using
default limits for (p, η, ϕ) →

BoxGenerator

14

BOX

Configuration parameters

o2-sim --noGeant -j 8 -o boxtest -n 100 --seed 196485619 -g boxgen
--configKeyValues "BoxGun.number=1"

Very basic example

• PYTHIA 8 is the most integrated and recommended
generator in our framework

• It can be fully configured via a special text file and
the GeneratorPythia8 parameter

• valid settings can be found in the PYTHIA 8 reference manual

• The mkpy8cfg.py tool in O2DPG can be used to
simplify the creation of the config file → all options
available using the --help flag

PYTHIA 8 in O2

15

o2-sim -n 10 -g pythia8 --configKeyValues
“GeneratorPythia8.config=pythia8.cfg”

random
Random:setSeed = on
Random:seed = 130145275

beams
Beams:idA = 1000822080
Beams:idB = 1000822080
Beams:eCM = 5020.000000

processes

heavy-ion settings (valid for Pb-Pb 5520 only)
HeavyIon:SigFitNGen = 0
HeavyIon:SigFitDefPar = 13.88,1.84,0.22,0.0,0.0,0.0,0.0,0.0
HeavyIon:bWidth = 14.48

decays
ParticleDecays:limitTau0 = on
ParticleDecays:tau0Max = 10.

phase space cuts
PhaseSpace:pTHatMin = 0.000000
PhaseSpace:pTHatMax = -1.000000

pythia8.cfg

run with this config

${O2DPG_ROOT}/MC/config/common/pythia8/utils/mkpy8cfg.py --output=pythia8.cfg --idA=2212 --idB=2212 --eCM=13600 --process=none

mkpy8cfg.py usage example

https://www.pythia.org//latest-manual/Welcome.html
https://github.com/AliceO2Group/O2DPG/blob/master/MC/config/common/pythia8/utils/mkpy8cfg.py

HepMC generation

• Many generators allow by default to output HepMC
formatted data → universal and convenient way of
storing information from MC event generators

• o2-sim is capable of reading HepMC files out-of-the
box → data from FIFOs can be read as well

• HepMC3 is the default, but HepMC2.06 data
are compatible as well

• An additional feature of the tool is to spawn event
generators using the cmd parameter of
GeneratorHepMC → generators printing data in the
stdout can be set to feed data automatically to o2-sim
→ no need for large local .hepmc files

16

o2-sim -n 10 -g hepmc --configKeyValues
“HepMC.fileName=/path_to/file.hepmc"

👉 Example: run/SimExamples/HepMC 👉 Example:
run/SimExamples/HepMC_STARlight

Generation with local HepMC file or FIFO

… --configKeyValues 'HepMC.fileName=/path_to/file.hepmc;HepMC.version=2"

o2-sim -n 100 -g hepmc --seed 12345 --configKeyValues
"GeneratorFileOrCmd.cmd=epos.sh;GeneratorFileOrCmd.bMax
Switch=none;HepMC.version=2"

Generation with automatic FIFOs using run/SimExamples/HepMC_EPOS4

More info <HERE>

https://github.com/AliceO2Group/AliceO2/blob/dev/run/SimExamples/HepMC/
https://github.com/AliceO2Group/AliceO2/blob/dev/run/SimExamples/HepMC_STARlight/
https://github.com/AliceO2Group/AliceO2/blob/dev/run/SimExamples/HepMC_EPOS4/
https://aliceo2group.github.io/simulation/docs/generators/generatorso2.html#generating-using-fifos

External Generators
• Apart from Pythia, direct (compiled) integration of

specific generators is small in O2 in order to
decouple PWG specific generator code and
configs from data-taking

• avoid recompile

• Rather, “external” generators can be interfaced in
o2-sim by using just-in-time ROOT macros which
implement, e.g., a GeneratorTGenerator class

• setup generator at “use-time” in C++

• generator setup becomes “configuration problem”

• This method is used to setup PWG specific
generation in the O2DPG production system

• e.g. PWGDQ cocktail generator

17

o2-sim -n 10 -g external --configKeyValues
'GeneratorExternal.fileName=myGen.C;GeneratorExternal.funcN
ame="gen(5020)"'

👉 Example:
Run/SimExamples/AliRoot_AMPT

👉 Example:
Run/SimExamples/AliRoot_Hijing

// my fully custom generator
class MyGen : o2::generator::GeneratorTGenerator {
 void Init() override;
 bool generateEvent() override;
};

FairGenerator* gen(double energy) {
 return new MyGen(energy);
}

“call o2-sim with -g external option and reference the external file
and function name”

“stub content of ROOT macro file myGen.C”

👉 More info in documentation

https://github.com/AliceO2Group/O2DPG/blob/master/MC/config/PWGDQ/external/generator/GeneratorCocktailPromptCharmoniaToElectronEvtGen_pp13TeV.C
https://github.com/AliceO2Group/AliceO2/tree/dev/run/SimExamples/AliRoot_AMPT
https://github.com/AliceO2Group/AliceO2/blob/dev/run/SimExamples/AliRoot_Hijing
https://aliceo2group.github.io/simulation/docs/generators/generatorscustom.html

• Custom O2DPG generators and triggers user configurations listed in the documentation

• Sorted in folders based on PWG interests: 275 configurations
• Common: 7
• PWGDQ: 32
• PWGHF: 63

O2DPG generators configurations

18

…

• ALICE3: 29
• PWGUD: 2
• examples: 7

• PWGEM: 55
• PWGGAJE: 33
• PWGLF: 47

https://aliceo2group.github.io/simulation/docs/generators/generatorso2dpg.html

EPOS4 and EPOS4HQ

19

• Both generators are available in their latest version

• Users can run standalone simulations by loading the AliGenO2 package
→ no need to use the ALICE simulation framework

• External custom configuration in O2DPG (loading O2sim) allows to run simulation with an
easier setup using our framework → example: GeneratorEPOS4.ini

• ROOT data format is available as output in standalone generator, but TTree is much less
readable than output from o2-sim (4.0.0 documentation here)

• Not a lot of usage in our collaboration but:
• O2DPG development makes EPOS4 easier to use
• Soft-QCD observables, collective effects, and heavy-ion physics should be described well thanks to

hydrodynamic system evolution, core-corona mechanism and a independent treatment of MPIs

• Available collision systems are hardcoded ⇒ will change in next release

However…

https://github.com/AliceO2Group/O2DPG/blob/master/MC/config/examples/ini/GeneratorEPOS4.ini
https://epos4learn.docs.cern.ch/docs/Execution/rootid/

• It’s the last generator included in AliGenO2 → 28/10/2025

• Standalone simulations are possible
→ Herwig ecosystem tutorial available in the website (to be adapted for ALICE environment)

• The generator can be interfaced directly to O2 using HepMC files/fifos → example provided
in this folder

• The recommended way is to use the external O2DPG generator ⇒ generator_Herwig.C
→ no HepMC middle files and simplified configuration → ThePEG interface used

• Configuration options are provided by .in files → all available parameters in documentation
and examples provided in Herwig7 source code

• Advanced users can feed the external gen with a .run file (locally built) and custom seed
→ reproducibility and testing purposes

Herwig 7

20

Run with ALICE

https://herwig.hepforge.org/tutorials/gettingstarted/firstrun.html
https://github.com/AliceO2Group/AliceO2/tree/dev/run/SimExamples/HepMC_HERWIG7
https://github.com/AliceO2Group/O2DPG/blob/master/MC/config/examples/herwig/generator_Herwig.C
https://herwig.hepforge.org/tutorials/gettingstarted/inputfiles.html
https://github.com/alisw/herwig/tree/alice/v7.3.0/src

Generators: Triggering

• Event filtering or triggering is also flexibly
supported on the generator level

• e.g., only produce and simulate events of a certain
property

• A user-configurable “external” trigger follows
the “external” generator mechanism

• one implements a trigger function in a separate ROOT
macro and pass it to o2-sim with the `-t external` option

• the trigger function inspects the vector of all generator
particles

• Advanced: DeepTriggers allow to trigger on
the collection of the primaries and further
internal information of the underlying generator

21

👉 Example:
Run/SimExamples/Selective_Transport_pi0

o2-sim -n 10 -g pythia8pp -t external --configKeyValues
‘TriggerExternal.fileName=myTrigger.C;TriggerExternal.funcNa
me=“trigger”'

// returns fully custom event trigger function
o2::eventgen::Trigger trigger()
{
 return [](const std::vector<TParticle>& particles) -> bool {
 return true; // triggered
 }
}

“call o2-sim with pythia8pp generator put pass forward only events
that satisfy the trigger condition given in file Trigger.C”

“stub content of ROOT macro file myTrigger.C”

ADVANCED

https://github.com/AliceO2Group/AliceO2/tree/dev/run/SimExamples/Selective_Transport_pi0

Gap triggered generators
• The event of interest (EOI) is selected only every n events → gaps are filled with min. bias events

• MB events and EOI identified by sub-generator IDs:
• mcCollision::getSubGeneratorId()=0 EOI
• mcCollision::getSubGeneratorId()=1 gap (MB event)

• Feature mimics real data-taking conditions with continuous readout → gap configuration must be
studied to find optimal solution (proper EOI/MB ratio)

22

👉 Example external conf.:
GeneratorHFTrigger_Xi_Omega_C.ini

ADVANCED

https://github.com/AliceO2Group/O2DPG/blob/6dcf1448255b35273c1c6355d6a2713f5d9029a9/MC/config/PWGHF/ini/GeneratorHFTrigger_Xi_Omega_C.ini

Signal embedding
• Particles can be injected (embedded) on top of an

underlying event → the entire event is then called
cocktail

• Injected particles and particles from the underlying
event can have a different source ID:

• mcCollision::getSourceId()=0 injected particles

• mcCollision::getSourceId()=1 bkg particles

23

ADVANCED

A word of advice…

Properties of real events containing triggered signal properties MB + injected signal

A bias might be introduced → study real event properties, quantify potential bias and tune
injection/properties

uncertain
equality

• Configuring a custom simulation in ALICE framework can be cumbersome:
• Long configuration keys to o2-sim in command line:

• sdf

• Limitations in embedding and triggering ⇒ only one configuration could be parsed
via command line

• Generators combination was sequential only

• The hybrid generator has been introduced as a more configurable alternative for
generators combination ⇒ it will become the default configuration method in the future

• Generators are configured using JSON file
• Simulation order is configurable:

- Sequential
- Uniformly distributed
- Randomisation based on fractions

• Possibility to run generators in parallel
• Easier cocktail simulations
• Triggers combination using and/or logic

The Hybrid generator

24

… -confKey
'GeneratorExternal.fileName=${O2DPG_MC_CONFIG_ROOT}/MC/config/PWGGAJE/external/generator/generator_pythia8_powheg.C;GeneratorExternal
.funcName=getGeneratorJEPythia8POWHEG(\"${PWD}/../powheg.input\",\"${PWD}/../pythia8_powheg_final.cfg\",2,10);'

• A script is provided to create a JSON template for the configuration
⇒ $O2DPG_ROOT/MC/bin/o2_hybrid_gen.py

• All generators in O2 are compatible with hybrid:
• pythia8
• pythia8hf,pythia8pp
• evtpool
• …

• Triggers can be configured with three options: and, or, off
• Multiple macros can be provided with their own functions

• External generators can be configured both using fileName and
funcName, or more easily directly with the iniFile →

• Few parameters are available to configure the generator behaviour:
• configFile ⇒ to get the JSON configuration
• randomize ⇒ if true randomisation will be enabled
• num_workers ⇒ number of threads available for parallel event generation

The Hybrid generator: configuration

25

config.json

$O2DPG_ROOT/MC/bin/o2_hybrid_gen.py --gen pythia8hf --iniFile $PWD/test.ini --trigger --output config.json

“GeneratorHybrid.configFile=${PWD}/config.json;GeneratorHybrid.randomize=true”

https://github.com/AliceO2Group/O2DPG/blob/master/MC/bin/o2_hybrid_gen.py

• Cocktail simulations were possible thanks to external custom
generators:

• Not very versatile
• Requires prior knowledge on O2DPG generators development
• Time consuming

• Hybrid generator allows now to combine multiple generators in a
cocktail by simply specifying them in the JSON configuration

• Each event contains a sequence of outputs from each generator

• Very useful when users want to inject single particles species:
• Example: Pythia8 + J/psi using box generator

26

config.json

The Hybrid generator: cocktails

Important info in next slide for
BoxGen injections!

27

The Hybrid generator: cocktails

Important reminder:
● If particles injected with Box generator are not decayed by default

⇒ PYTHIA 8 decayer can be called during transport with GEANT4

● Multiple decay lists can be provided

● Full decay options documentation is available in the official PYTHIA8 page

jpsidie.cfg

SimUserDecay.pdglist=443 421… or with physics decay list SimUserDecay.pdglist=443;DecayerPythia8.config[1]=~/jpsidie.cfg"

https://pythia.org//latest-manual/ParticleDataScheme.html

• Some rare events or heavy simulations require a long computation
time:

• e.g. Ωc
0 or Ξc

0, EPOS4 simulation

• Event pools can be created using a simple simulation workflow that
stops at the MC generation step without particles transport
→ a merging step takes care of multiple timeframes simulations

• --make-evtpool for
${O2DPG_ROOT}/MC/bin/o2dpg_sim_workflow.py

• -tt pool for
${O2DPG_ROOT}/MC/bin/o2dpg_workflow_runner.py

• Hybrid generator JSON is used to configure the creation of event
pools:

• Multiple threads can be used to speed up the simulation

Event Pools: creation

28

Events can be stored and reused = lots of saved CPU time

example.json

• Event pools are saved as ‘evtpool.root’ files

• extKinO2 is the base generator to work with single pools, but the recently developed
evtpool generator implements additional
logic in file management

Evtpool is the recommended choice when
working with a large amount of files

An AliEN path can be provided → generator
will take care of getting a random file among
the ones in the folder

• Events in the pools can be randomised

• Events can also be reused ⇒ round-robin schedule or tracks φ rotation

Event Pools: usage

29

evtpool.json

Anchored MC productions
• Simulations in which conditions are set to match those during a real data taking run

→ LHC filling scheme, included ALICE detectors, dead channels, alignment, interaction
rate etc.

• These productions are crucial for physics analyses to have realistic simulated samples

• One anchored MC run corresponds to one specific CYCLE of one SPLITID containing N
timeframes of the total→ full RUN covered when all CYCLEs are produced for all SPLITIDs

30

Documentation

CYCLE J - 1

where

J = Total N TFs
N*PRODSPLIT

←N is set via the running script (next slide)

https://aliceo2group.github.io/simulation/docs/o2dpgworkflow/anchored.html

Anchored MC productions

31

Documentation

CYCLE J - 1

where

J = Total N TFs
N*PRODSPLIT

export ALIEN_JDL_LPMANCHORPASSNAME=apass2
export ALIEN_JDL_MCANCHOR=apass2
export ALIEN_JDL_CPULIMIT=8
export ALIEN_JDL_LPMRUNNUMBER=535069
export ALIEN_JDL_LPMPRODUCTIONTYPE=MC
export ALIEN_JDL_LPMINTERACTIONTYPE=pp
export ALIEN_JDL_LPMPRODUCTIONTAG=LHC24a2
export ALIEN_JDL_LPMANCHORRUN=535069
export ALIEN_JDL_LPMANCHORPRODUCTION=LHC23f
export ALIEN_JDL_LPMANCHORYEAR=2023

export NTIMEFRAMES=1
export NSIGEVENTS=50
export SPLITID=100
export PRODSPLIT=153
export CYCLE=0

export SEED=5
export NWORKERS=2

${O2DPG_ROOT}/MC/run/ANCHOR/anchorMC.sh

Example script for Anchored MC simulation →

https://aliceo2group.github.io/simulation/docs/o2dpgworkflow/anchored.html

One last topic

RIVET is a Python and C++ based framework

Easy comparisons between MC simulations (in
HepMC format) and experimental Data

Published results pulled directly from
HEPData website using YODA files

Custom YODAs can be easily generated by the user

Phenomenological studies, MC/data validation,
generators development

Rivet: a MC validation tool

ATLAS example from MCplots repository
→ ALICE plugins will be inserted soon

Website

https://mcplots.cern.ch/
https://rivet.hepforge.org/

Who is Rivet for?

Experimentalists
Are data coherent with

simulation results?

Theorists
Can this new model
describe better the

experimental results?

Relatively easy to use → anyone with a
basic C++ understanding can use it

Valuable and powerful
resource for students

Rivet: a MC analysis tool
RIVET is probably the most famous tool to
compare experimental data to MC simulations

● Limited usage in ALICE → heavily used in other HEP
experiments → Standardised MC comparison method

● Included in AliGenO2 → no additional package
required

● Validation of generators and their development

● ALICE Primary particles definition is natively included in
the framework via AliceCommon.hh

● Great results with simple code

https://rivet.hepforge.org/code/dev/classRivet_1_1ALICE_1_1PrimaryParticles.html

What’s next?

ML/AI

The future is bright…

Simulation lectures are over,
but this is just a start

