Monte Carlo simulation
in High Energy Phy5|c

Marco Giacalon

¢

i

Z
3
=

\

‘\,.r"‘"

)

il

ST %

06.11.2025

ALICE

120

0

Lecture 2

1
4 =
- = —:

. Shanghai ™ ©

limportant:

SOftwa re e nVi rO n m e nt :Users without an AliEn certificate will experience a :
rem | N d er imited usage of the next presented tools | _ _ _ _ | '

simplest local build (basic generators such as PYTHIA8)
aliBuild build O2 O2DPG --defaults 02

alienv enter O2/latest,02DPG/latest

full local build (all generators with AliGen0O2, QC and O2Physics included)
aliBuild build O2sim --defaults 02

alienv enter O2sim/latest

MC stable releases — listed here
/cvmfs/alice.cern.ch/bin/alienv enter O2PDPSuite::MC-prod-2025-v13-1

https://aliceo2group.github.io/simulation/docs/mc-software-releases/

Integrated workflows: O2DPG MC

® |n order to produce simulated AODs, we need to go beyond
02-sim and event generation and run the complete
algorithmic pipeline including digitization and reconstruction
steps

® This is a complex system, consisting of many executables or
tasks, requiring consistent application and propagation of
settings/configuration to work together

® Example: full-system-test for data taking

® hard to get right on your own — use a maintained setup ! “Interplay of algorithms is a complex
system (DPL topology)”

® For ALICE Run3, the official production system targeting GRID
productions is O2DPG repo (MC part)

® 0O2DPG also contains scripts/setup for data taking (DATA part)

https://github.com/AliceO2Group/O2DPG

O2DPG ...

https://qithub.com/AliceO2Group/O2DPG

® provides authoritative setup for official MC
productions for ALICE-Run3 and a runtime to execute il
MC jobs on GRID

02DPG/MC/

sawenzel unify naming scheme; soft link 02dpg_workflow

* integrates all relevant processing tasks into a
coherent and consistent environment to have a
working pipeline from event generation to AOD and
beyond

analysis_testing
bin

config

doc

experimental

®* maintains PWG generator configurations as
versioned code

run

utils

=N S BN BN BN BN BN g

® performs testing / Cl on PWG generator configurations o

Important directories:

® MC/bin (workflow creation/execution)
® MC/run (PWG specific run scripts)
® MC/config (PWG specific generator configs)

http://www.apple.com/uk
https://github.com/AliceO2Group/O2DPG

Fundamentals of O2DPG-MC

® Running a MC job, is a two-fold process to decouple configuration logic from execution logic

1. Create a valid/configured description of a MC job == “workflow”

Gen +
Geant4

Workflow creator —1 22 -

TPC
clusterizer

TPC tracks
ﬂm

Global track matching

Creates a coherent, integrated MC
workflow in directed-acyclic-graph
(DAG) form, described as a JSON,

modelling the dependency of tasks

Configures the MC workflow as
function of important user

parameters: workflow.json
® collision system .
e generators Simple example...

® interaction rate
® number of timeframes

Real example workflow with just
2 timeframes is much larger...

eeeeee

Fundamentals of O2DPG-MC

® Running a MC job, is a two-fold process to decouple configuration logic from execution logic
1. Create a valid/configured description of a MC job == “workflow”

2. Run the MC job with a dynamic graph scheduler

Gen +
Geant4

Workflow creator —1 252 : — Workflow executor ——J» Output (AOD)

TPC
clusterizer

TPC tracks
ﬂm

Global track matching

Creates a coherent, integrated MC
workflow in directed-acyclic-graph
(DAG) form, described as a JSON,

modelling the dependency of tasks

Takes care of running the DAG workflow on
multi-core machines similar to a dynamic
“build” tool.

Launches tasks when they can be launched:
Configures the MC workflow as ® Targeting high parallelism and CPU
function of important user utilisation

parameters: ® Respect resource constraints (tries not to

® collision system overload the system)
® generators

_ . workflow.json
® interaction rate

In principle a universal tool, not specific to MC
® number of timeframes

O02DPG-MC workflows: Requirements

® Valid AliEn-tokens are required to run (to access CCDB objects)

The Condition and Calibration Data Base (CCDB) is a
ROOT file used to store calibration and alignment data
(centrality, TPC splines, calibration maps for
space-charge distortions, ...)

O02DPG-MC workflows: Requirements

® Valid AliEn-tokens are required to run (to access CCDB objects)

® Experts may circumvent by using CCDB snhapshots

® The O2DPG MC workflows are supposed to run in an 8-CPU core with 16GB RAM
environment reflecting the default resources on the GRID

® This is also the requirement that you should fulfill when running locally on your laptop

® This translates into some defaults which are put in the workflow creation / execution
® Transport simulation will use 8 workers
® TPC + TRD digitisation 8 threads

® The workflow runner will assume to have 8-cores available

® |n turn, O2DPG MC workloads may lead to problems when run on hardware with less
resources

® But with a bit a tuning/adjustment it might be possible to run

O2DPG-MC step 1: workflow creation

e ALICE Run3 MC workflow creation done by script
02DPG/MC/bin/o2dpg_sim_workflow.py

e Configures the MC workflow as function of important (user) parameters (collision system,
generators, interaction rate, number of timeframes, transport engine, etc.)

e '02dpg_sim_workflow.py --help’ —documentation with all available options

${0O2DPG_ROOT}/MC/bin/o2dpg_sim_workflow.py -eCM 14000 -col pp “Generate an ALICE-Run3 Monte Carlo
-gen pythia8 -proc cdiff workflow for a 5 timeframe simulation, with
2000 t timefi , atint ti t
-tf 5 —ns 2000 of 500KHz ... for 14TeV pp collisions Using
-interactionRate 500000 Pythia8 that has special process cdiff
-run 302000 enaped.

¢ Important options:

|
-gen, -tf, -n, -eCM, -interactionRate, -run, -col |
Optionally: -field, -seed, -proc [

https://gitlab.cern.ch/aliperf/alibibenchtasks
https://aliceo2group.github.io/simulation/docs/o2dpgworkflow/

Workflow creation: Run numbers

¢ The use of a run number is mandatory as it will

be used to determine a timestamp needed to e

Local testing

Collision System

fetch conditions from CCDB Ll
e So run numbers should be used even for))
non-data-taking anchored simulations
¢ A list of pre-defined run numbers for MC has P
been documented here:
https://twiki.cern.ch/twiki/bin/view/ALICE/O2D Rin3 Pb-Pb

PGMCSamplingSchema

e For example, for a PbPb simulation with field
-0.5T, a run number of 310000 can be used

e Should in principle fetch CCDB objects good
for PbPb

5.5 TeV
14 TeV

900 GeV

13.6 TeV

5.02 TeV

05T
2T

0.2T

-0.2T
unassigned
-0.5T

0.5T
unassigned
-0.5T

0.5T

unassigned

Run numbers assignment for unanchored MC

Magnetic field | Run no. Range

300000-300099
300100-300999

301000-301499

301500-301599
301600-301999
302000-302999

303000-303999
304000-309999
310000-310999

311000-311999
312000-319999

Time range (in EPOCH seconds)
1546300800-1546343770
1546343800-1546730770

1546730800-1546945770

1546945800-1546988770
1546988800-1547160770
1547160800-1547590770

1547590800-1548020770
1548020800-1550600770
1550600800-1551030770

1551030800-1551460770
1551460800-1554900770

JIRA Ticket

02-25727 (LHC21d9[x])

LHC21i1_nightly
LHC21i1[a-c]
LHC21i3[b, d-g]

02-26797 (LHC21k6)
LHC21i3[a, ¢]

02-277317 (LHC22b2)
02-27797 (LHC22b6)

https://twiki.cern.ch/twiki/bin/view/ALICE/O2DPGMCSamplingSchema
https://twiki.cern.ch/twiki/bin/view/ALICE/O2DPGMCSamplingSchema

- - —

Recommended way! ' '« Documentation
I @

Official configuration folder

Workflow creation: Generator configuration

Custom configurations can be specified to the generation workflow thanks to .ini files
o2dpg_sim_workflow.py -gen pythia8 -ini <path/to/config.ini>

They contain different sections for generator configurations but additional triggers for the produced
particles can be added

Official configurations can be found by default in
O2DPG/MC/config/<PWG>/ini/<config>.ini

and they are tested by a Cl when modifications are requested via PR or new configurations are

added Snippet from PWGDQ configuration

Configurations folder is linked to the [GeneratorPythia8]

. . config =
O2DPG—MC—CONFIG—ROOT environment variable ${0O2DPG_MC_CONFIG_ROOT}/MC/config/lcommon/pythia8/generato

l r/pythia8_hf.cfg

hooksFileName =
${02DPG_MC_CONFIG_ROOT}/MC/config/PWGHF/pythia8/hooks/pyt
hia8_userhooks_qqgbar.C

Local configurations can be used, but also newer ,
hooksFuncName = pythia8_userhooks_ccbar(-4.3,-2.3)

configurations can be tested with older O2DPG
build and viceversa 12

https://aliceo2group.github.io/simulation/docs/generators/generatorconfig.html
http://o2dpg/MC/config/%3CPWG%3E/ini/%3Cconfig%3E.ini
https://github.com/AliceO2Group/O2DPG/blob/master/MC/config/PWGDQ/ini/GeneratorHF_ccbarToMuonsSemileptonic_fwdy.ini

Good to know

O2DPG-MC step 2: workflow execution

® \Workflow runner/executor evaluates/builds a
DAG workflow on a compute node

® Minimally, it takes the workflow file and a target

as input
: . “Execute workflow up to
${02DPG_ROOT}/MC/bin/o2dpg_workflow_runner.py -f workflow.json -tt aod aod task (assuming 8-core

CPU config)”

¢ Checkpointing and incremental build 02dpg_workflow_runner.py -f workflow.json -tt digi
02dpg_workflow_runner.py -f workflow.json -tt aod

“First execute until digitization ... and then continue until AOD (not
doing tasks again which are already finished!)

® Convert DAG to simple shell script 02dpg_workflow_runner.py -f workflow.json -tt aod

which could be run standalone AUREE S o SE Sk .
Create a simple shell script which can run everything

sequentially up to AOD stage”

® ... many more useful features

® As usual, 02dpg_workflow_runner.py --help, lists possible options

BoxGenerator

® Simple mono-PDG particle generator
implemented in O2

® Produces particles with uniform distributions in
(P, N,) — 3D box shape

Very basic example

02-sim --noGeant -j 8 -o boxtest -n 100 --seed 196485619 -g boxgen
--configKeyValues "BoxGun.number=1"

100 events with 1 pion each will be generated using
default limits for (p, n, ¢) —

BOX

v

int pdg = 211,
int number = 10;
double eta[2] = {-1, 1};

double prange[2] = {0.1, 5};
double phirange[2] = {0., 360.};

Configuration parameters 14

PYTHIA 8 in O2

® PYTHIA 8 is the most integrated and recommended
generator in our framework

® |t can be fully configured via a special text file and
the GeneratorPythia8 parameter

® valid settings can be found in the PYTHIA 8 reference manual

® The mkpy8cfg.py tool in O2DPG can be used to
simplify the creation of the config file — all options
available using the --help flag

mkpy8cfg.py usage example

pythia8.cfg

##H random
Random:setSeed = on
Random:seed = 130145275

#Ht beams

Beams:idA = 1000822080
Beams:idB = 1000822080
Beams:eCM = 5020.000000

##Ht processes

##H heavy-ion settings (valid for Pb-Pb 5520 only)
Heavylon:SigFitNGen = 0

Heavylon:SigFitDefPar = 13.88,1.84,0.22,0.0,0.0,0.0,0.0,0.0
Heavylon:bWidth = 14.48

#Ht decays
ParticleDecays:limitTau0 = on
ParticleDecays:tauOMax = 10.

##Ht phase space cuts
PhaseSpace:pTHatMin = 0.000000
PhaseSpace:pTHatMax = -1.000000

run with this config

02-sim -n 10 -g pythia8 --configKeyValues
“GeneratorPythia8.config=pythia8.cfg”

${0O2DPG_ROOT}/MC/config/lcommon/pythia8/utils/mkpy8cfg.py --output=pythia8.cfg --idA=2212 --idB=2212 --eCM=13600 --process=none

15

https://www.pythia.org//latest-manual/Welcome.html
https://github.com/AliceO2Group/O2DPG/blob/master/MC/config/common/pythia8/utils/mkpy8cfg.py

HepMC generation

® Many generators allow by default to output HepMC
formatted data — universal and convenient way of
storing information from MC event generators
l Generation with local HepMC file or FIFO

02-sim -n 10 -g hepmc --configKeyValues
e 02-sim is capable of reading HepMC files out-of-the “HepMC.fileName=/path_toffile.nepmc™
box — data from FIFOs can be read as well
e HepMCS is the default, but HepMC2.06 data

are compatible as well ... -configKeyValues 'HepMC.fileName=/path_to/file.hepmc;HepMC.version=2"
e An additional feature Of the tool is to Spawn event Generation with automatic FIFOs using run/SimExamples/HepMC EPOS4
generators using the cmd parameter of 02-sim -n 100 -g hepmc --seed 12345 --configKeyValues
GeneratorHepMC N generators printing data in the “GeneratorFiIeOrCmd.cmc_l=epos.sh;GeneratorFiIeOrCmd.bMax

; . Switch=none;HepMC.version=2"
stdout can be set to feed data automatically to 02-sim P

— no need for large local .hepmc files

https://github.com/AliceO2Group/AliceO2/blob/dev/run/SimExamples/HepMC/
https://github.com/AliceO2Group/AliceO2/blob/dev/run/SimExamples/HepMC_STARlight/
https://github.com/AliceO2Group/AliceO2/blob/dev/run/SimExamples/HepMC_EPOS4/
https://aliceo2group.github.io/simulation/docs/generators/generatorso2.html#generating-using-fifos

& Example:

Run/SimExamples/AliRoot AMPT

& Example:
Run/SimExamples/AliRoot Hijing

External Generators

® Apart from Pythia, direct (compiled) integration of

specific generators is small in O2 in order to
decouple PWG specific generator code and
configs from data-taking

® avoid recompile

Rather, “external” generators can be interfaced in
02-sim by using just-in-time ROOT macros which
implement, e.g., a GeneratorTGenerator class

® setup generator at “use-time” in C++

® generator setup becomes “configuration problem”

® This method is used to setup PWG specific

generation in the O2DPG production system

* e.g. PWGDAQ cocktail generator

& More info in documentation

“call 02-sim with -g external option and reference the external file
and function name”

02-sim -n 10 -g external --configKeyValues
'GeneratorExternal.fileName=myGen.C;GeneratorExternal.funcN
ame="gen(5020)™

“stub content of ROOT macro file myGen.C”

/[my fully custom generator

class MyGen : 02::generator::GeneratorT Generator {
void Init() override;

bool generateEvent() override;

%

FairGenerator* gen(double energy) {
return new MyGen(energy);

}

https://github.com/AliceO2Group/O2DPG/blob/master/MC/config/PWGDQ/external/generator/GeneratorCocktailPromptCharmoniaToElectronEvtGen_pp13TeV.C
https://github.com/AliceO2Group/AliceO2/tree/dev/run/SimExamples/AliRoot_AMPT
https://github.com/AliceO2Group/AliceO2/blob/dev/run/SimExamples/AliRoot_Hijing
https://aliceo2group.github.io/simulation/docs/generators/generatorscustom.html

O2DPG generators configurations

e Custom O2DPG generators and triggers user configurations listed in the documentation

Mai
Custom configuration Description ol Generators Used
Folder
basic.ini Basic generator configuration. common Pythia8
e TPC loopers with flat gas distribution using WGAN neural network Custom
GeneratorLoopersFlatGas.ini s R common
models for pair and Compton electron generation. (TPCLoOpers.c)
. TPC loopers with Poisson-distributed pairs and Gaussian-distributed Custom
GeneratorTPCloopers.ini . common
Compton electrons using WGAN neural network models. (TPCLoOpers.C)
TPC loopers generator with a fixed number of pairs and Compton Custom
GeneratorTPCloopers_fixNPairs.ini s .g B P common
electrons using neural network models. (TPCLoOpers.C)
pythia8_NeNe_536.ini Pythia8 for NeNe collisions at 5.36 TeV. common Pythia8
pythia8_00_536.ini Pythia8 for OO collisions at 5.36 TeV. common Pythia8
pythia8_pO_961.ini Pythia8 for pO collisions at 9.61 TeV. common Pythia8
GeneratorHF_bbbar_PsiAndJpsi_fwdy_triggerGap.ini bb, Psi and J/psi at forward rapidity with trigger gap. PWGDQ Pythia8
GeneratorHF_bbbar_PsiAndJpsi_midy_triggerGap.ini bb, Psi and J/psi at mid-rapidity with trigger gap. PWGDQ Pythia8

e Sorted in folders based on PWG interests: 275 configurations
¢ Common:7 ® PWGEM: 55 ® ALICES: 29
® PWGDQ: 32 ® PWGGAJE: 33 ® PWGUD:?2
¢ PWGHF: 63 ® PWGLF: 47 ® examples: 7

https://aliceo2group.github.io/simulation/docs/generators/generatorso2dpg.html

EPOS4 and EPOS4HQ

Both generators are available in their latest version
Users can run standalone simulations by loading the AliGenO2 package
— Nno need to use the ALICE simulation framework
However...
External custom configuration in O2DPG (loading O2sim) allows to run simulation with an
easier setup using our framework — example: GeneratorEPOS4.ini

ROOT data format is available as output in standalone generator, but TTree is much less
readable than output from 02-sim (4.0.0 documentation here)

Not a lot of usage in our collaboration but:
® (0O2DPG development makes EPOS4 easier to use

® Soft-QCD observables, collective effects, and heavy-ion physics should be described well thanks to
hydrodynamic system evolution, core-corona mechanism and a independent treatment of MPls

Available collision systems are hardcoded = will change in next release

19

https://github.com/AliceO2Group/O2DPG/blob/master/MC/config/examples/ini/GeneratorEPOS4.ini
https://epos4learn.docs.cern.ch/docs/Execution/rootid/

Herwig 7

e |t’s the last generator included in AliGenO2 — 28/10/2025

e Standalone simulations are possible
— Herwig ecosystem tutorial available in the website (to be adapted for ALICE environment)

Run with ALICE

e The generator can be interfaced directly to O2 using HepMC files/fifos — example provided
in this folder

e The recommended way is to use the external O2DPG generator = generator Herwig.C
— no HepMC middle files and simplified configuration — ThePEG interface used

e Configuration options are provided by .in files — all available parameters in documentation
and examples provided in Herwig7 source code

e Advanced users can feed the external gen with a .run file (locally built) and custom seed
— reproducibility and testing purposes

20

https://herwig.hepforge.org/tutorials/gettingstarted/firstrun.html
https://github.com/AliceO2Group/AliceO2/tree/dev/run/SimExamples/HepMC_HERWIG7
https://github.com/AliceO2Group/O2DPG/blob/master/MC/config/examples/herwig/generator_Herwig.C
https://herwig.hepforge.org/tutorials/gettingstarted/inputfiles.html
https://github.com/alisw/herwig/tree/alice/v7.3.0/src

Generators: Triggering

® Event filtering or triggering is also flexibly
supported on the generator level

® e.g., only produce and simulate events of a certain
property

® A user-configurable “external” trigger follows
the “external” generator mechanism

® one implements a trigger function in a separate ROOT
macro and pass it to 02-sim with the "-t external option

® the trigger function inspects the vector of all generator
particles

® Advanced: DeepTriggers allow to trigger on
the collection of the primaries and further
internal information of the underlying generator

& Example

“call 02-sim with pythia8pp generator put pass forward only events
that satisfy the trigger condition given in file Trigger.C”

02-sim -n 10 -g pythia8pp -t external --configKeyValues
‘TriggerExternal.fileName=myTrigger.C; TriggerExternal.funcNa
me="“trigger”"

“stub content of ROOT macro file myTrigger.C”

/I returns fully custom event trigger function
02::eventgen::Trigger trigger()

return []J(const std::vector<TParticle>& particles) -> bool {
return true; // triggered

}
}

21

https://github.com/AliceO2Group/AliceO2/tree/dev/run/SimExamples/Selective_Transport_pi0

Gap triggered generators

® The event of interest (EQI) is selected only every n events — gaps are filled with min. bias events

event of interest Gap of I\/IB o event of interest

e MB events and EOI identified by sub-generator IDs:
e mcCollision::getSubGeneratorld()=0 EOI
e mcCollision::getSubGeneratorld()=1 gap (MB event)

e Feature mimics real data-taking conditions with continuous readout — gap configuration must be
studied to find optimal solution (proper EOI/MB ratio)

22

https://github.com/AliceO2Group/O2DPG/blob/6dcf1448255b35273c1c6355d6a2713f5d9029a9/MC/config/PWGHF/ini/GeneratorHFTrigger_Xi_Omega_C.ini

Signal embedding

injected injected
® Particles can be injected (embedded) on top of an particle 1 particle 3
underlying event — the entire event is then called
cocktail
® |njected particles and particles from the underlying injected
event can have a different source ID: particle 2
® mcCollision::getSourceld()=0 injected particles
® mcCollision::getSourceld()=1 bkg particles
: A word of advice...
: : - , . uncertain . - :
. Properties of real events containing triggered signal equality properties MB + injected signal

i A bias might be introduced — study real event properties, quantify potential bias and tune
I injection/properties

The Hybrid generator

e Configuring a custom simulation in ALICE framework can be cumbersome:

e |Long configuration keys to 02-sim in command line:
... -confKey
'GeneratorExternal.fleName=${O2DPG_MC_CONFIG_ROOT}/MC/config/PWGGAJE/external/generator/generator_pythia8_ powheg.C;GeneratorExternal
.funcName=getGeneratorJEPythia8POWHEG(\"${PWDY}/../powheg.input\" \"${PWD}/../pythia8_powheg_final.cfg\",2,10);'

e Limitations in embedding and triggering = only one configuration could be parsed

via command line
e Generators combination was sequential only

¢ The hybrid generator has been introduced as a more configurable alternative for
generators combination = it will become the default configuration method in the future
e Generators are configured using JSON file
e Simulation order is configurable:
- Sequential
- Uniformly distributed
- Randomisation based on fractions
Possibility to run generators in parallel
Easier cocktail simulations
e Triggers combination using and/or logic 24

The Hybrid generator: configuration

e A script is provided to create a JSON template for the configuration §

config.json

"mode": "sequential",
= $02DPG ROOT/MC/bin/o2 hybrid gen.py et
$02DPG_ROOT/MC/bin/o2_hybrid_gen.py --gen pythia8hf --iniFile $PWD/test.ini --trigger --output config.json E;E;gispt:lm '
"mode": "off",
e All generators in O2 are compatible with hybrid: e
pythia8 TEERE
® pythia8hf,pythia8pp .
® evipool ,;,}
o V “name": "“external",
iiteaner: -,
e Triggers can be configured with three options: and, or, off iniFiten: */hone/test/test. ind’

}

"triggers": {
"mode": "off",
‘specsif:i|

® Multiple macros can be provided with their own functions

e External generators can be configured both using fileName and
funcName, or more easily directly with the iniFile — | i

b

e Few parameters are available to configure the generator behaviour:
® configFile = to get the JSON configuration
® randomize = if true randomisation will be enabled
® num_workers = number of threads available for parallel event generation
“GeneratorHybrid.configFile=${PWD}/config.json;GeneratorHybrid.randomize=true” 25

1.
"fractions": [

https://github.com/AliceO2Group/O2DPG/blob/master/MC/bin/o2_hybrid_gen.py

The Hybrid generator: cocktails

config.json
{

"generators": [
f

"cocktail" : [

e Cocktail simulations were possible thanks to external custom
generators: _
® Not very versatile e
"includePartonEvent": false,
® Requires prior knowledge on O2DPG generators development bt
® Time consuming
e Hybrid generator allows now to combine multiple generators in a MZ
cocktail by simply specifying them in the JSON configuration e
1,
e Each event contains a sequence of outputs from each generator Ton
. ']';’Jhirange": [
e \ery useful when users want to inject single particles species: 0.

® Example: Pythia8 + J/psi using box generator -

] |

I,
"fractions": [

Important info in next slide for 0

| BoxGen injections | \
_______________ }

The Hybrid generator: cocktails

Important reminder:
e If particles injected with Box generator are not decayed by default
= PYTHIA 8 decayer can be called during transport with GEANT4

SimUserDecay.pdglist=443 421... or with physics decay list SimUserDecay.pdglist=443;DecayerPythia8.config[1]=~/jpsidie.cfg"

e Multiple decay lists can be provided
jpsidie.cfg

443 :0nMode = off

443 :onIfM dffh

e Full decay options documentation is available in the official PYTHIA8 page

27

https://pythia.org//latest-manual/ParticleDataScheme.html

Event Pools: creation

e Some rare events or heavy simulations require a long computation
time:
® eg. QCO or _:CO, EPOS4 simulation

:

Events can be stored and reused = lots of saved CPU time

e Event pools can be created using a simple simulation workflow that
stops at the MC generation step without particles transport
— a merging step takes care of multiple timeframes simulations

® --make-evtpool for
${O2DPG_ROOT}/MC/bin/o2dpg_sim_workflow.py

® -tt pool for
${02DPG_ROOQOT}/MC/bin/o2dpg_workflow_runner.py

e Hybrid generator JSON is used to configure the creation of event
pools:

® Multiple threads can be used to speed up the simulation

{
"mode": "parallel",
"generators": [
I

{
"name": "external",
"config": {
"fileName": "",
"funcName": "",
"iniFile": "/home/test/iniFile.ini"

}

{
"name": "external",
"config": {
"fileName": "",
"funcName": "",
"iniFile": "/home/test/iniFile.ini"

}

{
"name": "external",
"config": {
"fileName": "",
"funcName": "",
"iniFile": "/home/test/iniFile.ini"

}

"name": "external",
"config":
"fileName": "",
"funcName": "",
"iniFile": "/home/test/iniFile.ini"
}
\
}
1,
"fractions": |
1,

1,
1,
1

]
i

example.json 28

Event Pools: usage

e Event pools are saved as ‘evtpool.root’ files

e extKinO2 is the base generator to work with single pools, but the recently developed
evipool generator implements additional [

HP ; “mode": "sequential",
logic in file management e
l l “name": "evtpool",
. . "config": {
EthOOI IS the recommended Ch(_)lce When "eventPoolPath": "alien:///alice/cern.ch/user/path",
working with a large amount of files "skipNonTrackable": true,
"roundRobin": false,
l "randomize": true,
“rngseed": 0O,

An AliEN path can be provided — generator “randomphi”: false
will take care of getting a random file among
the ones in the folder 1,
“fractions": [
e Events in the pools can be randomised } '
}
e Events can also be reused = round-robin schedule or tracks ¢ rotation

h

evtpool.json

29

',Documentatlon

Anchored MC productions = =

e Simulations in which conditions are set to match those during a real data taking run
— LHC filling scheme, included ALICE detectors, dead channels, alignment, interaction
rate etc.

¢ These productions are crucial for physics analyses to have realistic simulated samples

¢ One anchored MC run corresponds to one specific CYCLE of one SPLITID containing N
timeframes of the total— full RUN covered when all CYCLEs are produced for all SPLITIDs

RUN 12345678 CYCLEO T CYCLE J- 1

where
J= Total N TFs
N*PRODSPLIT
L 1 1 1 1

ST

Number of splits (PRODSPLIT) Split (SPLITID) CYCLE 1

112l N€—N is set via the running script (next slide)

Timeframes

https://aliceo2group.github.io/simulation/docs/o2dpgworkflow/anchored.html

Anchored MC productions

Example script for Anchored MC simulation —

'Documentation;

—_—

export ALIEN_JDL_LPMANCHORPASSNAME=apass2
export ALIEN_JDL_MCANCHOR=apass2

export ALIEN_JDL_CPULIMIT=8

export ALIEN_JDL_LPMRUNNUMBER=535069

export ALIEN_JDL_LPMPRODUCTIONTYPE=MC

export ALIEN_JDL_LPMINTERACTIONTYPE=pp

export ALIEN_JDL_LPMPRODUCTIONTAG=LHC24a2
export ALIEN_JDL_LPMANCHORRUN=535069

export ALIEN_JDL_LPMANCHORPRODUCTION=LHC23f
export ALIEN_JDL_LPMANCHORYEAR=2023

export NTIMEFRAMES=1
export NSIGEVENTS=50
export SPLITID=100
export PRODSPLIT=153
export CYCLE=0

export SEED=5
export NWORKERS=2

${02DPG_ROOT}/MC/run/ANCHOR/anchorMC.sh

31

https://aliceo2group.github.io/simulation/docs/o2dpgworkflow/anchored.html

One last topic

Website

Rivet: a MC validation tool

RIVET is a Python and C++ based framework @ HEPData

l Repository for publication-related High-Energy Physics data

7000 GeV pp
= T T T

T T =

nts

Easy comparisons between MC simulations (in
HepMC format) and experimental Data 2 7 st

102 B Pythia 8.308 default —
l - :

Published results pulled directly from
HEPData website using YODA files

E Jet p_ (B >20,n|<28.E >20,n,<2.47 pinu>25 M >40 AR, 0.5)) EE

do/dp__ [pb/GeV]

L
Rivet 3.1.10, 22.2M e

L1
ch [arXiv:1306.3436]

Ty
n mcplots.cern

Custom YODASs can be easily generated by the user
Phenomenological studies, MC/data validation,
generators development ByfiSge e

ATLAS example from MCplots repository
— ALICE plugins will be inserted soon

https://mcplots.cern.ch/
https://rivet.hepforge.org/

Who is Rivet for?

1 W Q‘ .

Experimentalists

Are data coherent with
simulation results?

)
[4

Relatively easy to use — anyone with a
basic C++ understanding can use it

—_—

Theorists
Can this new model
describe better the
experimental results?

Valuable and powerful
resource for students

Rivet: a MC analysis tool

RIVET is probably the most famous tool to
compare experimental data to MC simulations

Ao
b—\
o

e Limited usage in ALICE — heavily used in other HEP
experiments — Standardised MC comparison method

e Included in AliGenO2 — no additional package

required 1

L

1.3

e Validation of generators and their development g
U 09

> o8

0.7

e ALICE Primary particles definition is natively included in 63

A primary particle is a particle with a mean proper lifetime 7 larger than 1cm/c, which is
either a) produced directly in the interaction, or b) from decays of particles with T smaller
than 1cm/c, restricted to decay chains leading to the interaction.

book(_h Lc,2,1,1);

p.abspid()==4122
h Lc->fill(p.pT()/GeV);

e Great results with simple code

Differential A. production cross section vs pr

T \HHH‘ T \HHH‘ T T TTTTI

-+

—4— Data =

—+— Pythia8.243 Modeo 57 |
—+— Pythia8.243 Mode2 5ey

MH‘HH‘HH‘HH T T TTTT

%

HH‘HHW

HH‘HH{HH‘\ H‘ (i} HH‘HH‘U\‘HH‘HH 1 | H\H‘ L1l HH\‘ L L] JHH‘

scale(_h_Lc,crossSection()/(microbarn*2*sumofWeights()));

15 20
pr [GeV/c]

https://rivet.hepforge.org/code/dev/classRivet_1_1ALICE_1_1PrimaryParticles.html

What’s next?

The future is bright...

Simulation lectures are over,
but this is just a start

