

ALICE-TOF

2nd lecture

F. Noferini* on behalf of the ALICE-TOF group *INFN Bologna

Shanghai, China, 5th November 2025
The 1st ALICE Experiment and Heavy-Ion Physics Workshop

Outline

1st lecture

- Role of PID in HEP physics
- PID in ALICE
- The Time Of Flight Det.
- Multigap Resistive Plate
 Chambers (MRPC) →TOF
- TOF performance in ALICE Run 1/2
- Physics with TOF in Run 2 (few highlights)

2nd lecture

- Usage of TOF PID (+ with other Dets.)
- TOF upgrade in Run 3
- TOF in continuous readout era
- TOF operations in Run 3
- TOF performance in Run 3

ALICE and PID

Different and complementary techniques in a "low" magnetic field (B=0.2/0.5 T) → high acceptance down to very low momenta

(O(100 MeV))

TOF operates in the intermediate momentum region (hadron separation and more)

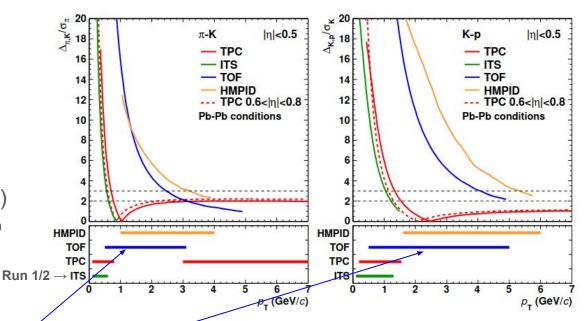


Fig. 46: Separation power of hadron identification in the ITS, TPC, TOF, and HMPID as a function of p_T at midrapidity. The left (right) panel shows the separation of pions and kaons (kaons and protons), expressed as the distance between the peaks divided by the resolution for the pion and the kaon, respectively, averaged over $|\eta| < 0.5$. For the TPC, an additional curve is shown in a narrower η region. The lower panels show the range over which the different ALICE detector systems have a separation power of more than 2σ .

ALICE and PID

Different and complementary techniques in a "low" magnetic field (B=0.2/0.5 T) → high acceptance down to very low momenta

(O(100 MeV))

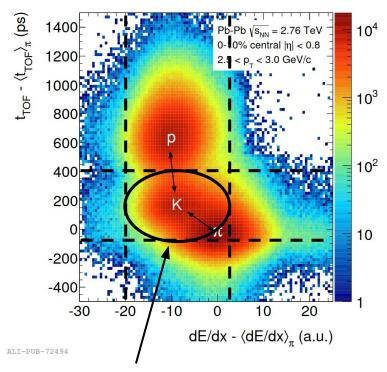

TOF operates in the intermediate momentum region (hadron separation and more)

Fig. 46: Separation power of hadron identification in the ITS, TPC, TOF, and HMPID as a function of p_T at midrapidity. The left (right) panel shows the separation of pions and kaons (kaons and protons), expressed as the distance between the peaks divided by the resolution for the pion and the kaon, respectively, averaged over $|\eta| < 0.5$. For the TPC, an additional curve is shown in a narrower η region. The lower panels show the range over which the different ALICE detector systems have a separation power of more than 2σ .

Can we combine information from many detector (e.g. TPC+TOF)?

Combined PID

In the intermediate p_T region one single detector may be not sufficient to provide a good PID. However the combination of the information allows a good PID performance.

Such an approach was largely used using TPC and TOF in the $p_{\rm T}$ region up to 4 GeV/c.

Elliptic cut corresponds to a cut on the variable:

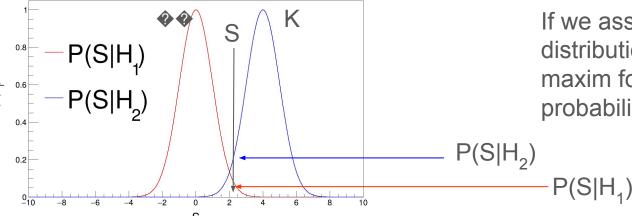
$$n_{\sigma,comb}^2 = n_{\sigma,TOF}^2 + n_{\sigma,TPC}^2$$

Definition in the Bayesian language (I)

Let's define a detector response for a given mass hypothesis, H_i , is given, for simplicity, by a Gaussian distribution (Bayesian approach doesn't require necessary Gaussianity!):

$$P(S|H_i) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}n_{\sigma}^2} = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(S-\hat{S}(H_i))^2}{2\sigma^2}}$$

This represents, in the case of a single detector, the so called **conditional probability**, i.e. the probability that a particles crossing how detector "releases" that signal.


S = measured signal (dE/dx, tof, ...)

 $S(H_i)$ = expected signal for a given mass hypothesis

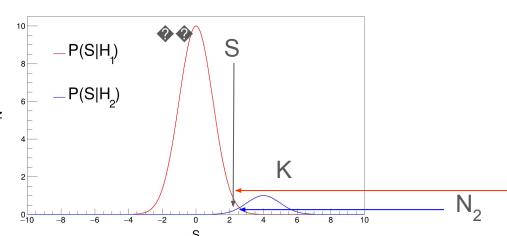
If we generalize to the multi-detector case it can be written as a product:

$$P(\vec{S}|H_i) = \prod_{\alpha = \text{ITS}, \text{TPC}, \dots} P_{\alpha}(S_{\alpha}|H_i) \qquad \text{Where } \vec{S} = (S_{\text{ITS}}, S_{\text{TPC}}, S_{\text{TOF}}, \dots) \text{ is now a vector} \\ \rightarrow \text{probability to have those measured signals}$$

Conditional probability

Let's suppose to have two hipotesis (one peaked at 0 and one peaked at 4, same width)

Our problem is the following:


Is it correct to associate the identity to a track accordingly to the higher conditional probability? If $P(S|H_2) > P(S|H_1)$, does it mean that H₂ is more probable when we register a signal S? Answer: No, because if particle 1 is much more abundant in nature it can be still the most favorite hypothesis.

If we assume a Gaussian probability distribution each hypothesis has a maxim for a specific value and then probability decreases quite fast.

Conditional probability refers to the

could produce that signal.

Conditional probability

Conditional probability refers to the probability that a given hypothesis could produce that signal.

If we assume a Gaussian probability distribution each hypothesis has a maxim for a specific value and then probability decreases quite fast.

 $-N_1$ = frequency of hypotesis 1

Also abundances (proportional to the AREA of curves) play a relevant role Our problem is the following:

Is it correct to associate the identity to a track accordingly to the higher conditional probability? If $P(S|H_2) > P(S|H_1)$, does it mean that H_2 is more probable when we register a signal S? Answer: No, because if particle 1 is much more abundant in nature it can be still the most favorite hypothesis.

Definition in the Bayesian language (II)

If we know how detectors we can easily calculate $P(\vec{S}|H_i)$, the probability that assuming a given particle (mass hypothesis) it can produce the signals we measured.

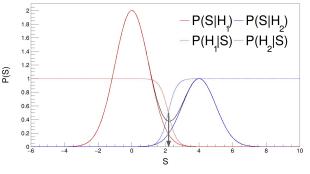
But our problem is different: we need to know what is the probability that the assuming a measurement the signal was generated by a given particle (mass hypothesis) $\rightarrow P(\vec{H_i}|S)$ or **posterior probability**

Ther relation of the quantities is established by the Bayesian theorem in this

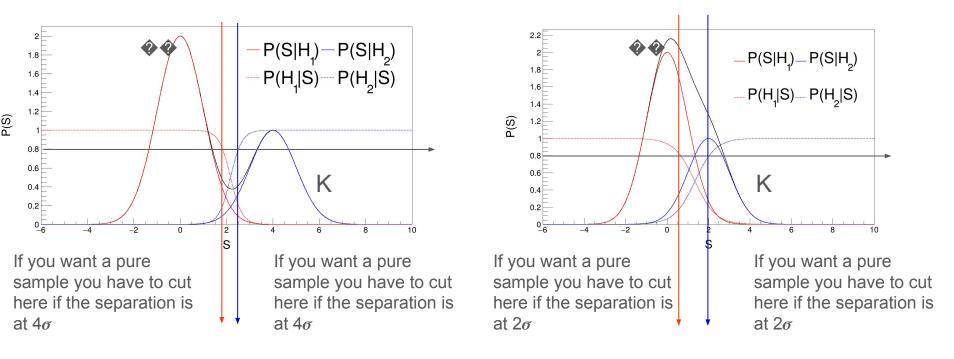
form:

$$P(H_i|\vec{S}) = \frac{P(\vec{S}|H_i)C(H_i)}{\sum_{k=e,\mu,\pi,\dots} P(\vec{S}|H_k)C(H_k)}$$

 $C(H_i)$, prior probability or priors, represents the fraction of H_i -particle in the data sample we consider ... simplifying: in case of an ambiguous detector response we have a higher probability to be right if we identify the particle accordingly to the hypothesis most abundant in the sample


Definition in the Bayesian language (II)

If we know how detectors we can easily calculate $P(\vec{S}|H_i)$, the probability that assuming a given particle (mass hypothesis) it can produce the signals we measured.


But our problem is different: we need to know what is the probability that the assuming a measurement the signal was generated by a given particle (mass hipotesis) $\rightarrow P(H_i|\vec{S})$ or **posterior probability**

Ther relation of the quantities is established by the Bayesian theorem in this

form:

Bayesian probability tells you what is the purity of the signal you would have if you accept the track with a given mass hypothesis.

Note that when losing particle separation the efficiency decreases when requiring higher purities.

ALICE Bayesian PID in Run 2

$$P(H_i|\vec{S}) = \frac{P(\vec{S}|H_i)\overline{C(H_i)}}{\sum_{k=e,\mu,\pi,\dots} P(\vec{S}|H_k)C(H_k)} P(\vec{S}/H_i) = \prod_{\alpha=ITS,TPC,\dots} P(S/H_i) = \frac{1}{2\pi\sigma} \exp(-n_{\sigma}^2/2)$$

This is the critical part. If there are non Gaussian effects we need to parametrize them properly in the detector response function \rightarrow this is why in Run 2 we needed to validate the technique!

Bayesian approach is a powerful tool...

BUT it has to be treated carefully

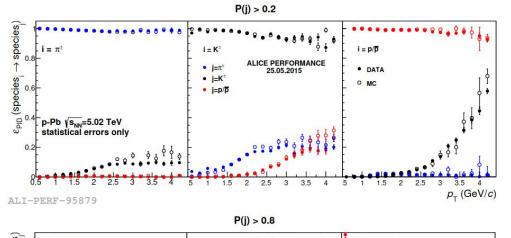
Validation of Bayesian PID

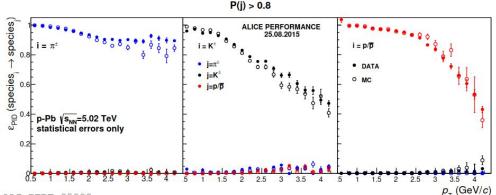
- The use of Bayesian probability easily allows to manage multi-detector scenarios in a natural way typically by applying a cut on the probability for our particle of interest.
- PID efficiencies are extracted via simulations
 the simulation of our detector has to be well under control

The validation strategy was based on the selection pure samples of pions, kaons and

protons using specific decay channels:

And then checking the probability for the identification in all the particle hipoteses


→ BOTH IN DATA AND SIMULATIONS (MC)


Data and sims have to agree in order to prove that everything is under control

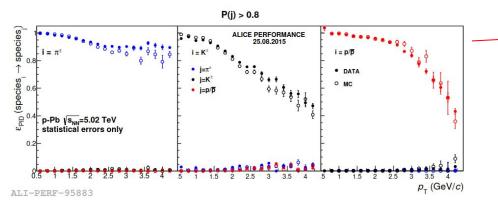
Results for TPC and TOF combined PID

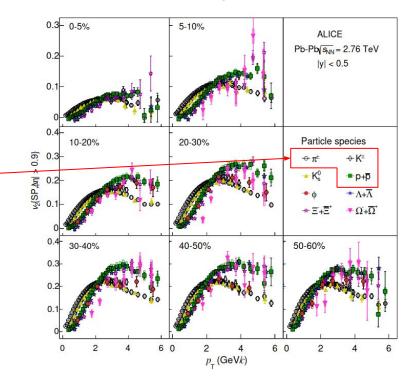
Eur. Phys. J. Plus 131 (2016) 168

ALI-PERF-95883

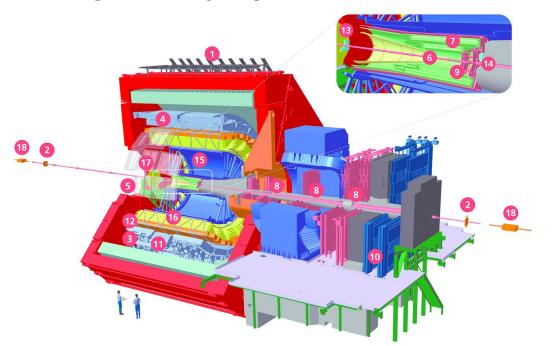
The combined PID using TPC and TOF PID signals were validated using Run 1 data (p-Pb) with different requests (cut on probability values) on the Bayesian probability.

The consistency between data and MC, in different scenario, was better than 5% urery good understanding of our detector responses.


Such an approach was extensively used in Run 2 and hass to be extended also in Run 3.


14

Bayesian PID →physics


Elliptic flow of identified particles (π, K, p) was done with a TPC-TOF Bayesian PID

The first use case was the elliptic flow of identified hadrons but then the technique was extensively used in many Run 2 analyses.

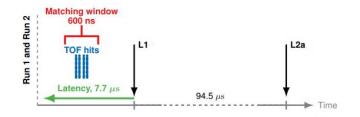
ALICE in Run 3

- ACORDE | ALICE Cosmic Rays Detector
- AD | ALICE Diffractive Detector
- 3 DCal Di-jet Calorimeter
- 4 EMCal | Electromagnetic Calorimeter
- 5 HMPID | High Momentum Particle
- ITS-IB | Inner Tracking System Inner Barrel
- 7 ITS-OB | Inner Tracking System Outer Barrel
- 8 MCH | Muon Tracking Chambers
- 9 MFT | Muon Forward Tracker
- 10 MID | Muon Identifier
- 11 PHOS / CPV | Photon Spectrometer
- 12 TOF | Time Of Flight
- 13 T0+A | Tzero + A
- **T0+C |** Tzero + C
- 15 TPC | Time Projection Chamber
- 16 TRD | Transition Radiation Detector
- 17 V0+ | Vzero + Detector
- 18 ZDC | Zero Degree Calorimeter

ALICE detector in Run 3

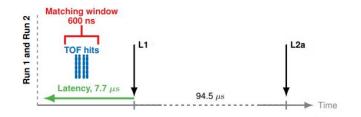
The ALICE detector underwent a series of upgrades during the LS2 to enable future advancements focused on precision measurements of statistics-limited rare probes in both large (Pb−Pb) and small collision systems (pp) → to sustain data taking in high interaction rate conditions up to 1 MHz in pp collisions and 50 kHz in Pb−Pb collisions

TOF in Run 3

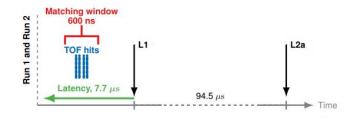

In order to sustain higher interaction rates ALICE changed the paradigm for data acquisition and processing moving to **continuous readout** mode (this is indeed a major upgrade) and TOF should adapted at the new scheme as well → upgrade of TOF readout electronic:

- ALICE TOF detector completed the readout electronics upgrades in early July 2022
- This involved the production of a new readout board designed by INFN Bologna and using high-speed optical links (GBTx) to achieve a high bandwidth, 400 Mb/s, and high quality clock

Data Readout Module 2


Figure 1: The DRM2 board

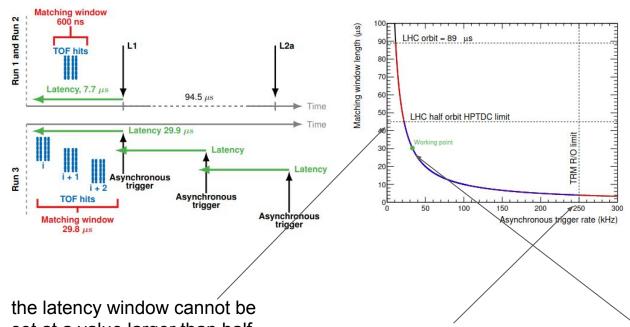
* trigger is defined as a condition determined by a detector condition (e.g. at least N channels fired in one event), or a combination of conditions from many detectors, which tells us than an interesting event is occurred and tht we want to register it:


- It should be fast (we need to take a decision in a short time... other events are coming)
- It should be distributed to all the detectors.

TOF was conceived as a triggered detector. In Run 1 and 2 data were read when a trigger* signal (from a collision) was received → typically few kHz trigger rate

TOF was conceived as a triggered detector. In Run 1 and 2 data were read when a trigger* signal (from a collision) was received → typically few kHz trigger rate

When TOF receives a trigger, the Data Readout Module collects all the information contained in the Trigger Readout Module (hits) which were collected so far. To be sure the whole event is registered there is a latency is set (since we always read in the past) and then all data within a matching window (much larger than the typical collision time distribution) are stored

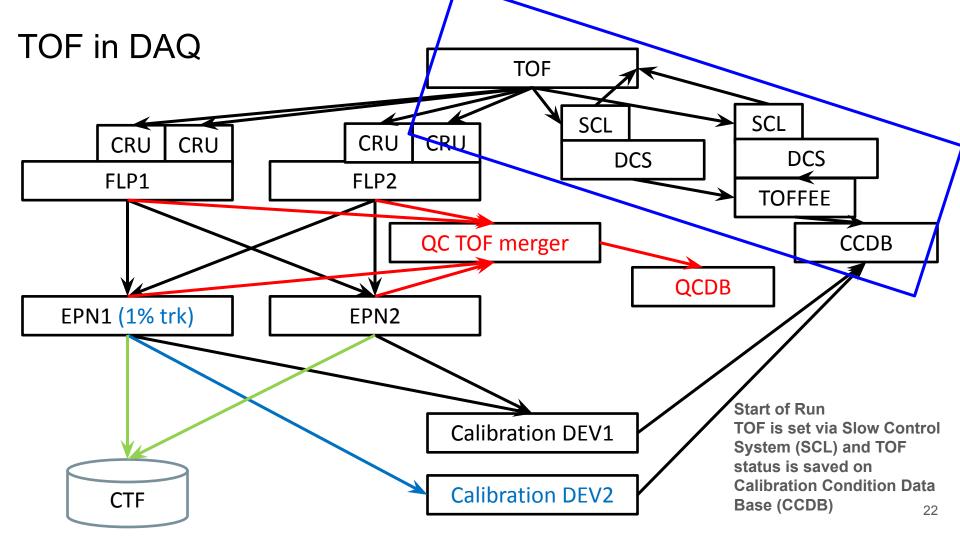

Fraction of time read and stored by TOF at 1 kHz trigger rate

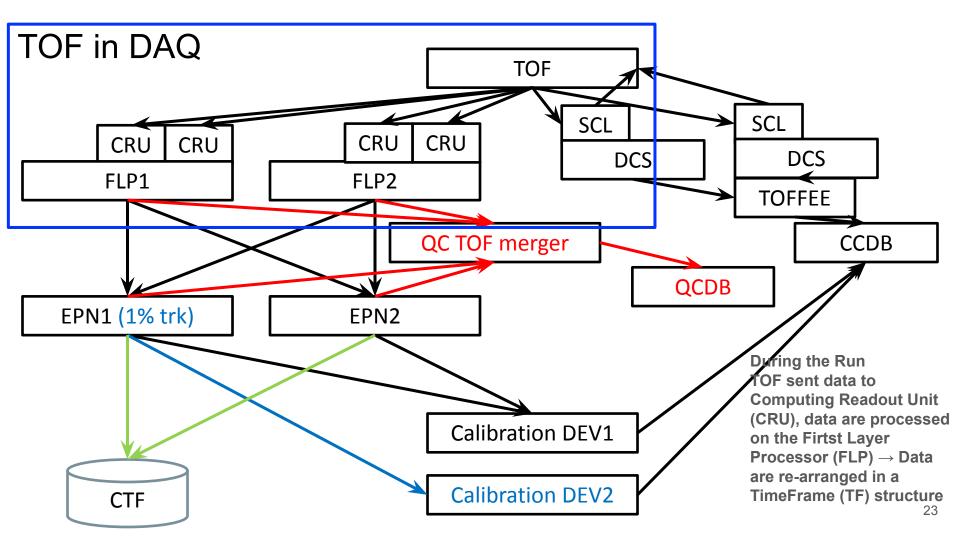
= 1 kHz x 600 ns

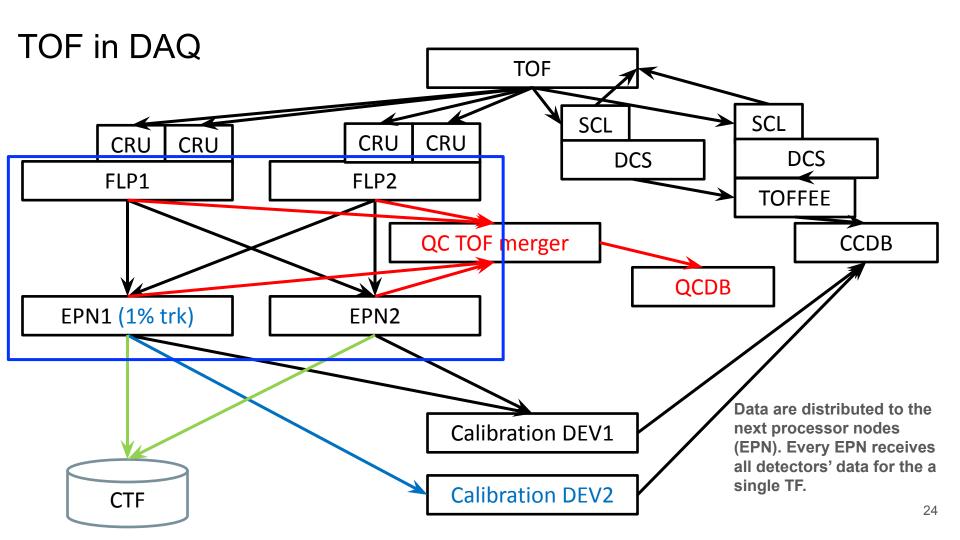
= 0.06%

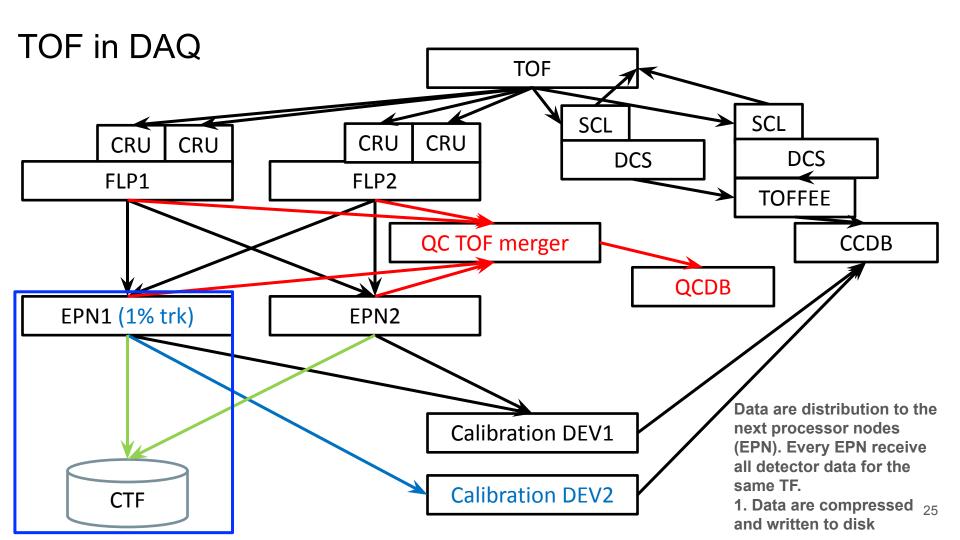
TOF was conceived as a triggered detector. In Run 1 and 2 data were read when a trigger signal (from a collision) was received → typically few kHz trigger rate

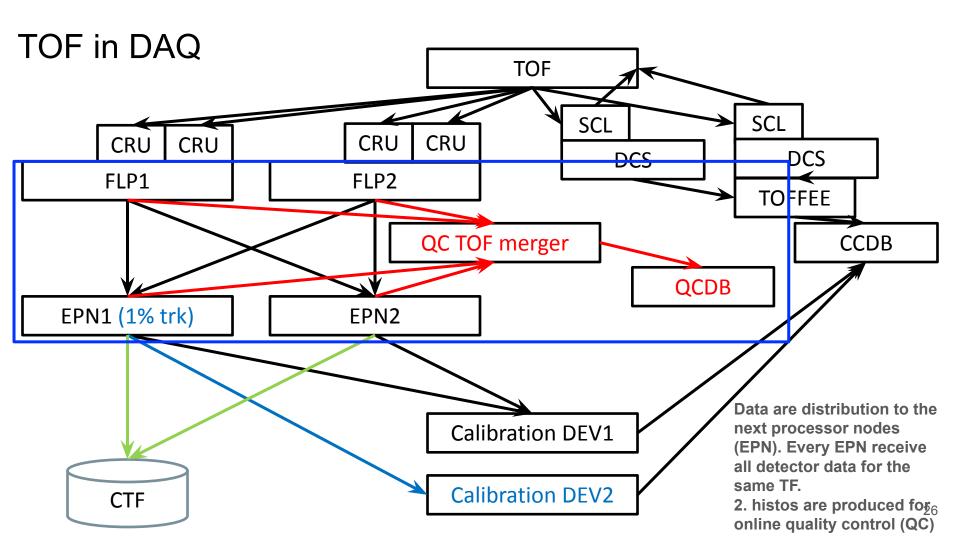
When TOF receives a trigger, the Data Readout Module collects all the information contained in the Trigger Readout Module (hits) which were collected so far. To be sure the whole event is registered there is a latency set to be sure we don't cut anything (since we always read in the past) and then all data within a matching window (much larger than the typical collision time distribution) are stored

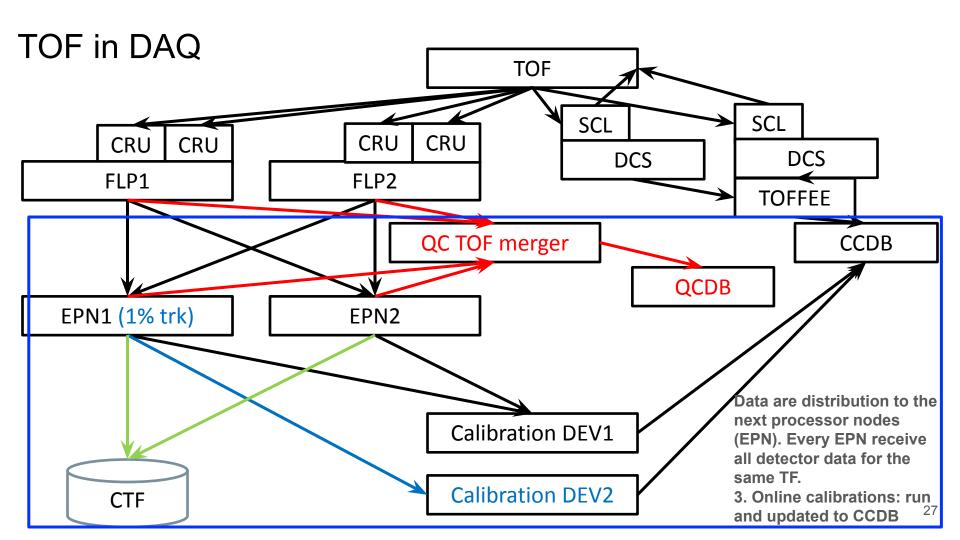


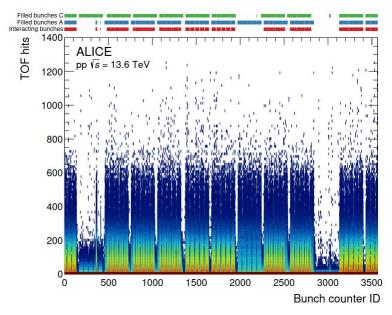

the latency window cannot be set at a value larger than half of an LHC orbit

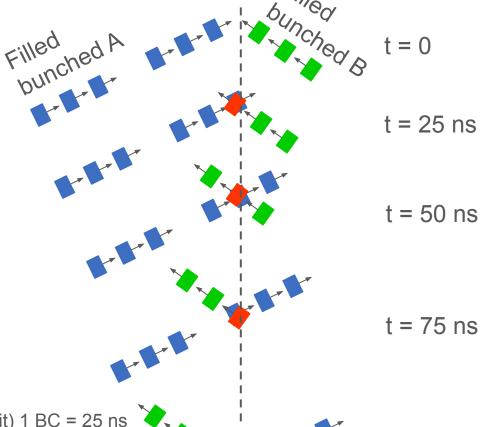

the trigger frequency cannot be too high, due to the HPTDC readout time inside the TDC readout module (TRM)


In Run 3 we replaced the physics trigger (typically few kHz rate) with a periodic trigger given at fixed time intervals and storing all the hits collected in the whole interval →actually ½ orbit (every $\sim 30 \,\mu s$) \rightarrow ~ 33 kHz trigger rate and reading $\sim 30 \,\mu s$ of data at each trigger

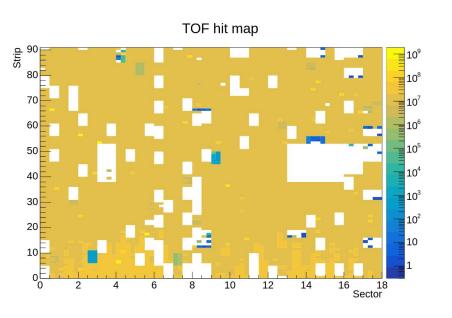

33 kHz x 30 μ s = 100% (we read and store all!)







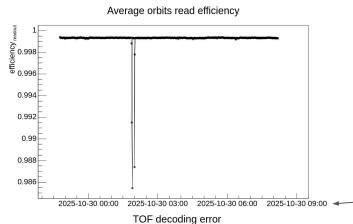
Online we check several quantities:

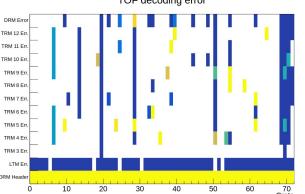


Filling scheme (BC structure inside one LHC orbit) 1 BC = 25 ns LHC orbit (time for a proton to cover to full cycle inside the ring $\sim 90~\mu s$)

t = 100 ns

Online we check several quantities:

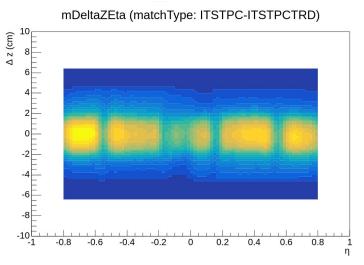

During data acquisition TOF hit map is always checked and compared with the expected maps for active channel maps.



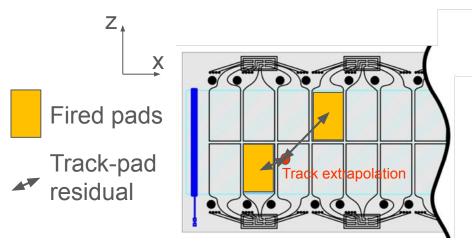
Unexpected holes can trigger an intervention.

Note that:

If we are not able to control data acquisition conditions we cannot use data to do physics.



Our electronics, time to time, can have failures. We need to monitor the efficiency and quality of the data to trace any source of error continuously (trending along time).


→ again, any error which can produce inefficiency has to be considered in our simulations.

Online we check several quantities:

For a fraction of events → full reconstruction (~1%) → Quality of the track-TOF matching (e.g. track extrapolation residuals at TOF)

Remember: track extrapolation has to be well aligned with TOF (on average residuals at zero!)

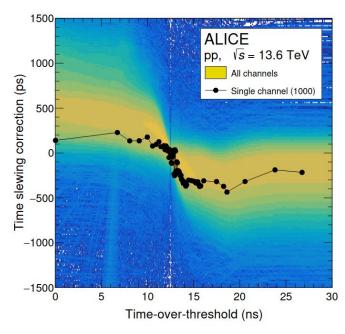
In case of multiple matching-pad candidates a minimization on residuals is applied to select the better association

Calibrations

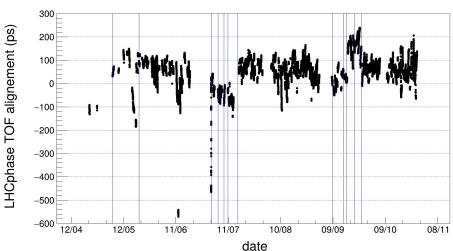
Along the full chain of the data taking/reconstruction, there are three subsequent calibration stages:

- 1. DCS calibration performed during the start of the run from the TOF slow control system
- 2. synchronous calibration done during the data taking on the EPN farm
- 3. asynchronous calibration required in the offline reconstruction

Sync calibrations:

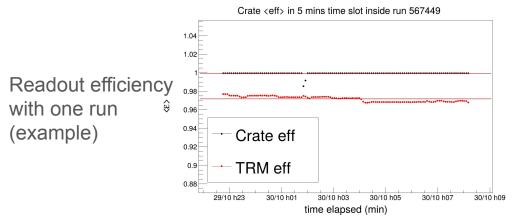

- Diagnostic: all decoding errors are traced in 5 minutes slot (to be used in MC)
- 2. Time aligned (global offset with respect LHC clock) is computed in 5 minutes slots
- 3. Single channel offsets are calibrated

Async calibrations:

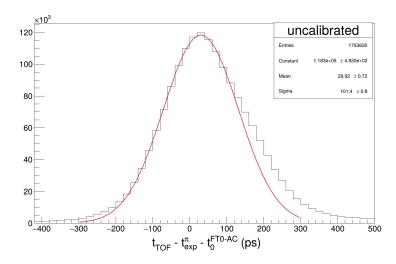

- 1. Refined time aligned (global offset with respect LHC clock) is computed in 5 minutes slots
- 2. Single channel offsets are calibrated and also time slewing calibrations (requiring large stats) are done

Async calibrations rely on the first offline reconstruction (calibration pass) done on 10% of each good run

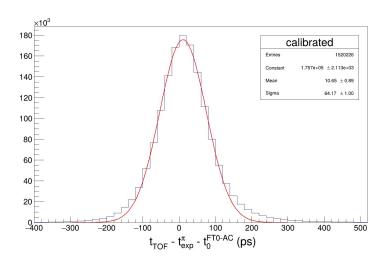
Calibrations (II)



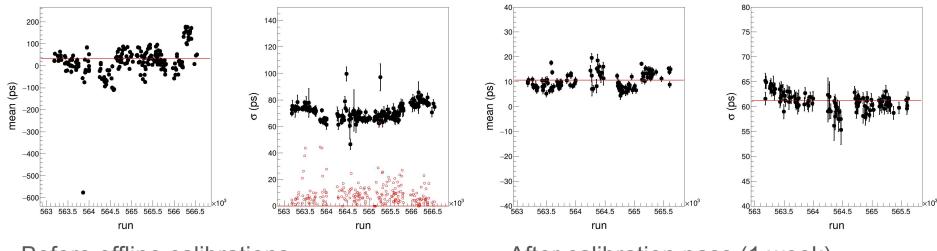
Time slewing corrections (2022 pp data)



2025

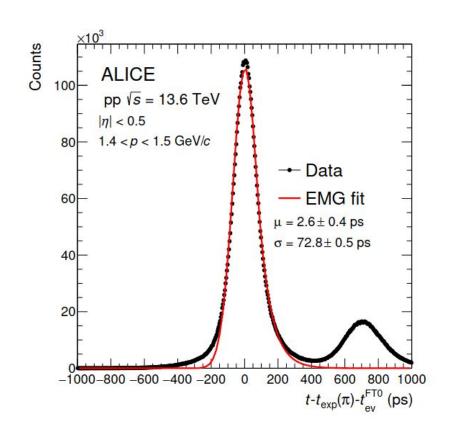

TOF - LHC clock alignment in 2025 pp data

TOF calibration in Run 3 (2025)

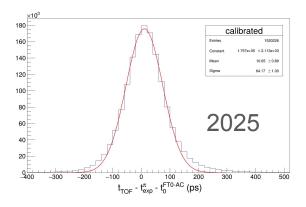


Before offline calibrations

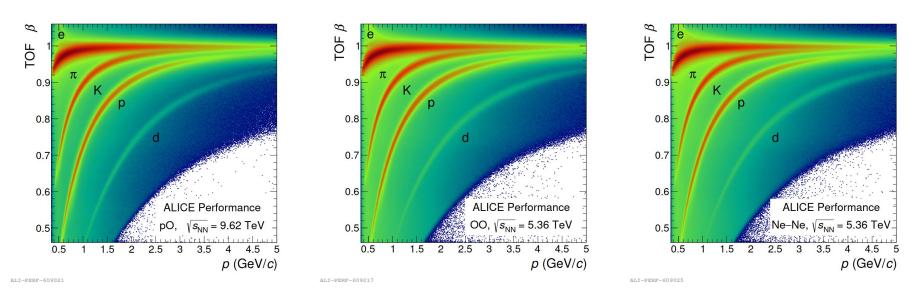
After calibration pass (1 week after first reconstruction pass is over, run-by-run)


TOF calibration in Run 3 (2025)

Before offline calibrations (in red the spread introduced to the uncalibrated TOF - LHC clock alignment)

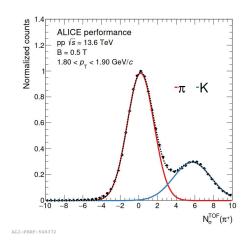

After calibration pass (1 week)

TOF performance

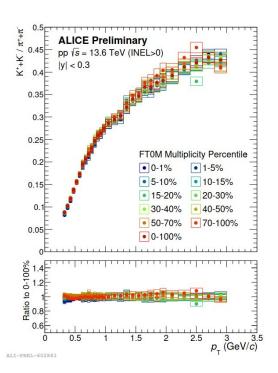


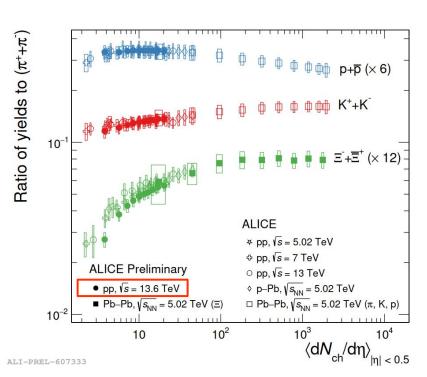
A paper on TOF performance is close be published on the first data we collected in Run 3 (pp in 2022).

As shown, in the meantime quality improved (also thanks to the big improvement on tracking, TPC calibrations, which determines the quality of t_{exp})



TOF performance (II)




Excellent and uniform performance achieved so far for all data sample and for different colliding system. Also in the recent campaigns for pO, OO and Ne-Ne

Few highlights of physics with TOF (ALICE preliminary)

Hadron production in pp@13.6 TeV



What next

Superconducting

magnet system

Time-Of-Flight System (TOF)

Requirements:

- Moderate rad. $\begin{cases} \text{inner TOF: NIEL} \sim 6.1 \cdot 10^{12} \text{ 1-MeV n}_{eq} / \text{cm}^2 \\ \text{outer TOF: NIEL} \sim 9 \cdot 10^{11} \text{ 1-MeV n}_{eq} / \text{cm}^2 \\ \text{forward TOF: NIEL} \sim 8.5 \cdot 10^{12} \text{ 1-MeV} \\ \text{n}_{eq} / \text{cm}^2 \end{cases}$
- Low material budget ~1-3% X₀
- Time resolution $k/m \lesssim 500 \text{ MeV/c}$ $k/m \lesssim 2.5 \text{ GeV/c}$ $k/m \lesssim 2.5 \text{ GeV/c}$ $k/m \lesssim 4 \text{ GeV/c}$ Extensive R&D on the most advanced silicon technologies: $k/m \lesssim 100 \text{ GeV/c}$

New exciting opportunities for the study of:

- → Multi-charm hadrons at low momenta
 - → Crucial test for coalescence models
 - ◆ EM radiation produced in the first evolution phases of QGP

Detector

Muon

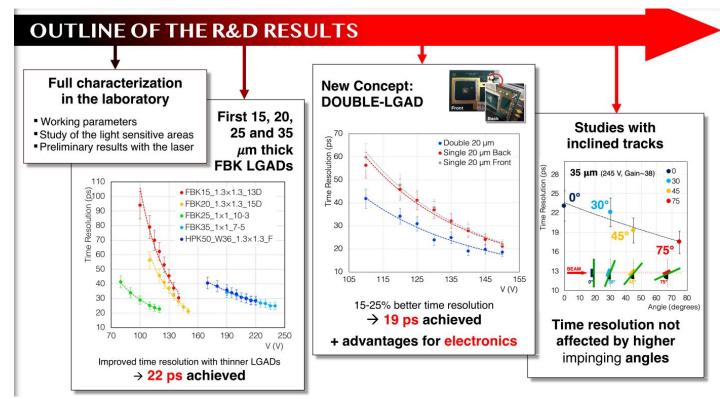
absorber

Muon

chambers

TOF

Tracker



Progress on R&D...

S. Strazzi PhD thesis

http://cds.cern.ch/record/2929067/files/CERN-THESIS-2025-027.pdf

Note that there is a dedicated lecture on ALICE 3 by J. Klein

Thanks for your attention!!!