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ALICE upgrades timeline

ALICE 2

ALICE 2.1

ALICE 3

2022 2023 2024 2025

026 2027 2028 20292030

2031

LS3: FoCal and ITS3

FoCal Lol: CERN-LHCC-2020-009

2032 2033 2034

Muon chambers
FCT

FoCal TDR: ALICE-TDR-022

Not covered in this talk
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ITS3 Lol: CERN-LHCC-2019-018
ITS3 TDR: ALICE-TDR-021

LS4: ALICE 3

Absorber
Magnet

ECAL
RICH

TOF
Tracker

Vertex detector

ALICE 3 Lol: CERN-LHCC-2022-009

Not covered in this talk

2Q37 2038 2039 2040 2041
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Replacing the 3 innermost layers with new ultra-light, truly
cylindrical layers

XXo %] tar tracks in 0] < 1

ITS3 J07

Wafer-scale bent sensors (1 sensor per half-layer) in 65 nm
technology

Reduced material budget (from 0.36% to 0.07% X, per layer)
with a highly homogenous material distribution by removing
water cooling, circuit boards and mechanical support

Closer to the interaction point (from 23 to 19 mm)

ITS2 Inner Barrel

‘ Radiation tolerance ,
: *  TID: 400 krad S
Better vertexing and lower bgckgrounds fqr « NIEL: 4 x 1072 IMeV n,, /cm?
heavy-flavour and low-mass dielectron studies
08 VL
Other ‘ silicon IB Layer Parameters Layer 0 Layer 1 Layer 2

074 ITSZ - \Vater 074 ITSB = mean = 0.05 % y = >
" - Ahcriis sogal Sensor length [mm] 265.992

i = Sensitive length [mm] 259.992
05 silieen c 05
- R e % ool Sensor azimuthal width ([mm| 58.692 78.256  97.820
= i Radial position [mm] 190 252 31.5 |
- Enz Equatorial gap [mm] 1.0
51 A Max thickness [pm] 50
0a v G Ii T T -

¢ s PR e ™ "’ ? = R i ey ™ 4. 2 Table 3.3: Design dimensions of the sensor dies and radial position.
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Detector concept

Cylindrical Structural Shell (CYSS)

e Three cylindrical detector layers, each split
into two half-layers

e Each half-layer includes
* Wafer-scale bent silicon sensor
* Flexible printed circuits (FPC)
* Lightweight carbon foam structures
* Polymer gas distributor

* All layers are enclosed by the CYlindrical
Structural Shell (CYSS)
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ALICE

Half-ring

Carbon foam

Longeron
Carbon foam

Half-layer sensors

Beampipe
Beryllium
Radius = 16.5 mm



/\_.reconstruction: a test case for vertexing
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A benchmark for secondary-vertex performance - a short-lived charm
baryon with ct = 60 um

Challenge

* Ina central Pb—Pb collision, O(10k) charged particles are produced.
 Random combinations of p, K, it tracks form a huge combinatorial
background

Background suppression

* Particle identification (PID)
Use TPC + TOF to select proton, kaon, and pion tracks
- Strongly reduces random combinations, since most tracks are
pions while protons and kaons are relatively rare

Topology

* A, daughters have non-zero DCA to the PV (displaced tracks)

* Apply minimum DCA cuts on single tracks to reject primary particles

 Combine displaced tracks to fit a common secondary vertex
separated from the PV

* These topological cuts isolate genuine A, decays



A\_reconstruction: impact of ITS3 performance
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ITS3 provides factor ~ 3—4 higher signal significance, especially at low p;
Signal-to-background ratio improves by nearly one order of magnitude
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Performance — pointing resolution
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* Improvement in pointing resolution by a factor of 2 over all momenta = improved separation of secondary vertices
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ITS3 geometry - dead zones

Width of sensors

1 4
r 1 ~27 cm
. g Ry*n=754mm
. '
% \‘. / =B : $06-08mm !
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v [/ - \Width of middle chips \ : I
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L )
1
Radius

* Blue: sensitive areas

* Red: dead areas

* Gap between the two
hemicylinders
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Performance — impact on dead zones
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Assumptions here:
: * 1 mm gap between top and bottom
“:3 e Total: 8-9% dead area

open markers: at least a hit in one of the first 3 layers reer
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full markers: all reconstructed tracks

full markers: hils in all layers

open markers: at least a hit in one of the first 3 layers
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* Increase of tracking efficiency for low-p; particles and extension of the low-p; reach
» Dead zones have direct impact on efficiency and pointing resolution = important to optimise mechanics and chip
design in this parameter
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Can we bend silicon?

06/11/2025 J. Liu

Thin MAPS are very flexible

Bending force proportional to (thickness)3

Force normalized to 50 um (mN)

ITS3 target radius and thickness verified

Approximate radius (mm)

30.08

15.15 10.22 7.8 6.38

600

500 -

400 -+

300 -

200

100 +

% Breaking Point
~4— 40 um 65 nm processed
~4— 50 um 65 nm processed
~4— 30 um SuperALPIDE
~4— 40 um SuperALPIDE
~4— 50 um SuperALPIDE

2 3 4 5
Displacement (mm)
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Sensor bending

* Functional chips (ALPIDEs) and MLR1 sensors are
bent routinely at different labs

* Bending of ER1 prototypes (babyMOSS) ongoing

* Full mock-up of the final ITS3, called “pITS3”
* 6 ALPIDE chips, bent to the target radii of ITS3 tested
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Performance after bending

e Sensors remain fully functional after bending
* No performance degradation observed at target bending radius
* Spatial resolution of 5 um, consistent with flat ALPIDE

* Detection efficiency exceeds 99.99% under nominal conditions,
matching performance of unbent ALPIDE

2 307 - - - . -
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v
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L
£
=
£
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Threshold (e™)
Inefficiency
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@DESY 5.4 GeV/c electrons
Plotted on 29 Sept 2022
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Chip development roadmap

2021

2022

2023

2024

2025

2026

MLR1 (Multi-Layer Reticle 1): first MAPS in

TPSCo 65 nm

e Successfully qualified the 65 nm process for
ITS3 (and much beyond)

ER1 (Engineering run 1): first stitched MAPS

e Large design “exercise”, stitching was new

e Tests concluded mid-2025

ER2: first ITS3 sensor prototype

* Tape-outin July 2025

ER2: testing expected early 2026

ER3: ITS3 sensor production

EL NWELL COLLECTION ' NWELL COLLECTION
3 colitetion = NMOS  PMOS & BCTRODE - - P FAOS ELECTRODE
G-w w ' = R, 5 = W ; p e =
"*‘u J = mu e PWELL .,___uwm_J Ly | _PWELL | PWELL | NWELL | o _ PWELL | NWELL
B __DEEPPWELL  DEEPPWELL “DEEP PWELL . DEEPPWELL
4 A DOSE HAVRE BBCRNT LOW DOSE H-TYPE IMPLANT
DEPLETION DEPLETION
‘ ! BOUNDARY BOUNDARY
DEPLETED ZONE DEPLETED ZONE DEPLETED ZONE
Sta ndard process fin Modified process Modified process with gap
DEFLETION ROUNDARY
P EFITAXIAL LAYER P* EPITAXIAL LAYER P+ EPITAXIAL LAYER
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MLR1 characterization (1/2

Detection efficiency (%)
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Distance along the path (um)
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Efficiency losses predominantly at pixel edges and corners

Digital Pixel Test Structure (DPTS)

* 32x32 pixel matrix

* Asynchronous digital readout with Time-
over-Threshold information

* Pitch: 15 um

*  Only “modified with gap” process
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Analogue Pixel Test Structure (APTS)
*  6x6 pixel matrix
* Direct analog readout of central 4x4 pixels
* Two types of output drivers
* Source follower (APTS-SF)
* Fast OpAmp (APTS-OA)
* Pitch: 10, 15, 20 and 25 pm
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MLR1 characterization (2/2
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z o 00 radiation hardness
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The 65 nm technology qualified!
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WITY oA HALF STITCHED UNIT (t of 20, BOTTOM) NoIT

M OSS T (Ll (| | e

i i i H

e 14 x 259 mm, 6.72 MPixel = = | [ = | = = | i
* Segmented into o s— e G

EEE s EEEE = S EE s ERiEE=

Control e | e N R

* 10 repeated sensor units (RSU)
* Top and bottom halves with different pitches
(22.5 and 18 um)
* Four different sub-matrices each with different
analog designs
e Each half RSU is powered and can be tested

independently
e Goal: understanding of yields and possible
defects

e Stitched “back-bone” allows to control and readout
the sensor from the left short side

e S  — ———. . — . — S S e e ——— > S ——————————— W ——————————————— e ————
e e — — ———_—. ——————— —————— —" ————t———— . — — — — -
—_— e e e e e e e e e e e e e e o e o e e . . s s, s, . s . . B St S s S B . S A B . — — o
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ER1 postprocessing
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MOSS wafer handling
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How to test such large sensor?

MOSS test
system

25cm

MOSS CHIP Carrier Card

Proximity v2 Board

65 cm

06/11/2025 J. Liu

73cm

MOSS Carrier +
Lab Equipment
Very Low Voltage

Shorts or anomalies? Impedance
Tests

MOSS Carrier +
Lab Equipment

I-V characteristic?

Changes in impedance? Impedance
Tests

Full powering &
Initialization
LD CIELE  Full Powering Scans
DAC Scan + Functional Tests

Pulse Pixels
Fe55

MOSS Test System

] \ AN

N N

19



MOSS vield — powering

1 RSU, thermal camera image

LRl ALLL AL IR LS ILELRL L8 Lo IL UL MR BN -~
W N S ST TN | SRR T PEnRet [ 1T T g e -
" L TR IRIEREN 1R ITRPROTIA A TR TIRRL (TR ey - "

@hotspot

1 seaeesi [T | TTVTRENTY SN VE Y
B T = S PURPERRE S S
B L L T e R i

SEM (Scanning Electron Microscopy) cross section of the top two metal layers

T R ——— g

Microscopy

E_ TR - A B BRI R R R R R

Cutting

25.5 mm %

Power ramps were conducted while monitoring with a thermal camera

« Hotspots were observed in chips exhibiting shorts
A relatively large number of shorts are observed

Reason identified (shorts between metal layers)

* This issue was reported to the foundry, which expressed strong interest and later confirmed similar issues in other products
Metal stack change foreseen to facilitate power distribution = expected to mitigate/resolve this issue

/ Observation
surface

Target volume

06/11/2025 J. Liu 20



MOSS test beams
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Threshold (DAC)

30

Fake-hit rate (hits/pixel/event)

FHitet

Irradiation comparison
Region 2, top
Pitch: 22.5 um
Type: 2.5 um gap
Split 1

Ibias = 62 DAC
Ipiasn = 100 DAC
Ireset = 10 DAC
lgp = variable
Vshie = 145 DAC
Vcasn = variable
Vpsyp = -1.2V

T =27°C

Detection efficiency
Fake-hit rate
Non-irradiated

1 Mrad

10 Mrad

1013 1 MeV neqgcm™2

* Good operational margin before irradiations = confirmed performance from previous submissions
e QOperational margin is maintained at ALICE radiation levels
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vV,

Stitching works!
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The final sensor prototype

Final full size, full functionality sensor - MOSAIX

* Modular design
» Sensor divided into 5 segments (allowing to use 3, 4 or 5 segments for layers 0, 1 and 2, respectively)

* Fill factor / sensitive area: > 93% - \

Layer 0: 12 x 3 repeated units+endcaps - Li. I — — 1
Layer 1: 12 x 4 repeated units+endcaps § @ T l | SEGMENT | - | - el M | oo | sl s [l s E,
Layer 2: 12 x 5 repeated units+endcaps © S o 3| 1
~ |
% ?2,'\ \5 /]
Repeated (Stitched) Sensing Unit ARY \
. \‘\
\
__l21666
\ 259,992 Sensitive z-Iength 4
—:-—; . —«:—lf-i
\ ssse2  Physical z-lengt One sensor one half-layer!

!
13
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MOSAIX

SUPPLIES ————
|/Os «—

SUPPLIES ——
|/OS |

|
SUPPLIES ———

|/Os «—

* Powering from both sides
* Control and readout from the LEC only
* LECis equivalent to 8 IpGBTs

12 RSU per segment, 12 TILEs per RSU

Power consumption: 40 m\W/cm?
Yield target: > 98% of pixels active
Submitted in July 2025

SUPPLIES
‘—.
SUPPLIES
4+
e e e e e e e e (e e o
UPPLIES
12x REPEATED SENSOR UNIT
VAN = ] Foo e | e e T T
Interfacing from the Left End Cap (LEC) and Right End Cap (REC) : | g i
o ; *| i . e g SO, g R g SN g e DaOme C<L
£ <l1l, £ : 5 S
E 8 :ia. e &1 -E -\‘? 0
# $ .2 ' Vl: T e - 3 " - - 4 e 3 Ul e i‘ Z
8- E g NTRO! 2{ & o e b == U i T S — 1 —— | Eg E
: ) . 3| Kl | [ i o b=
144 TILEs can be switched on, biased and read out independently [ | - ; i N e ‘g e B e g
3 i i 5 5 3
v — .—":b ; B ey Morwrery Porrer 3 Ferpheny Py Prghery
< v < > <
4.5 mm 21.666 mm 1.5 mm
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System development strategy

BreadBoard Models (BBMs) O

* Initial prototypes representing selected
features of the final design

Engineering Models (EMs) o
e Used for design development;
composed of a mix of final-grade and
commercial components

Qualification Models (QMs)

* Fully integrated, final-grade assemblies
including MOSAIX sensors (final full
functional prototype), used for
gualification tests

Final Models (FMs)

* Two final half-detectors for installation,
plus two spare half-detectors

06/11/2025 J. Liu Full scale EM 24



Mechanics and cooling solutions

e Carbon foam used as support and radiator

Support
Longerons //
(Allcomp K9 SD) )
Half-ring
(ERG Duocel Carbon) ERG Carbon

@Duocel

p = 0.045 kg/dm3

k = 0.033 W/m-K

Half-ring
(Allcomp K9 SD)

06/11/2025 J. Liu

Support & cooling

K9

Standard Density
p= 0.2-0.26 kg/dm3
k=>17 W/m-K

25



e\ ¢ e Emate SyveT
177 0000 rev

X-ray tomography

* Assembly procedure developed
* Gluing optimised
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Stability tests

&l %
,’ Wind tunnel

Laser measurement
machine for
vibration analysis
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Air cooling analysis —

Thermal characterization setup
Dummy silicon equipped with copper serpentine simulating heat
dissipation in matrix (50 mW/cm?) and end-cap (1000 mW/cm?) o

regions Flow distributors -
8 PT100 temperature sensors distributed over the surface of each
half-layer
. L2 cooling @ 50 mW/cm? inymatrix Asids
& i T3
. T4
. AToC] |4 5| R E = &
e T6 < FLOW O
‘; ,}, T7 Temperature sensor position and nomenclature
&~ 1 T8
! s ¢ _
F - -
* Temperature inlet air (Ty) = 20°C,
" * The detector can be operated at a temperature
0t .y —— ] of 5 degrees above the inlet air temperature
0 2 1 6 3 10
Uso (M/8)

06/11/2025 J. Liu
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Vibrational study

* Non-contact displacement sensors for vibration measurements = avoid perturbation of the airflow approaching the half-layers
* Glass windows implemented on the dummy beampipe and CYSS = allow displacements on the half-layer 0 and 2 to be measured

(c) Dummy beam pipe Glass windows Confocal sensor

m;ﬂg:—;aj’ ’

- T L o g
o~

L2 Center hole
Displacement vs. time Power spectral density of the displacements
1, 4 : i g 208 '
—— Experiment
e Simulation
—_ 9
TR e Peak-to-peak ~ 1.1 um
N A * rms of the displacement
Z 0.8}
= <0.4 um
a
U‘_\
A 0.4
= e— ; e 0
0 10 20 30 250 500 750 1000 1250
t (s) Center hole f (Hz)
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Thermoelastic tests

Thermoelastic expansion setup

» Differential thermoplastic expansion caused by short-term temperature fluctuation among different components could

introduce failures

* Final grade material half-layer assembly in climate chamber (up to 40 °C by steps of 2 °C)

Materials

C-side H-ring: carbon foam, ERG (RVC) Duocel®
Longerons: carbon foam, ERG (RVC) Duocel®
Half-layer 2: Blank silicon 40 pm

CYSS: carbon sandwich

A-side H-ring: carbon foam, Allcomp k9 SD

06/11/2025 J. Liu

O

Several thermal cycles for a total of 50 hours -
assembly unaffected

Further tests will be performed to investigate
rapid increase of the temperature and
maximum failure temperature
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Interconnection (1/2)

Flexible printed circuits (FPC) for communication and powering

* Placed outside the sensible area
* 3,4 or 5 sections corresponding to the number of detector chip segments of the half-layer
* Three double copper layers flex, multi-strip shaped (15-30 cm long), connected in a concentrated merging area

~25¢cm

Sensc L1 sensor o §{ — Merging area
LO sensor g ‘ '
Power Comectr 7-, l
L —
VRO « IEVD0 5
1 oG i
VES 0
/ S
R
L A -
AvsS « Pl § : -
z{ P B8O
ao o~ LE S
: » Tl
8 o ’:uu*.w
v /,
H /
E Solgermask 20 ym
E
n‘w' Copper 35 um
160 pm
185 ym Paolymide Or 50 or 25 ym
135 pm
Copper 35 pm
Soldermask 20 pm

72mm
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Interconnection (1/2) Eee)

Interconnection through wire-bonding at the edge of the sensor verified
Wire-bonds loops optimized based on pull-force measurements with

ALPIDE sensors
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'}\l ) I

06/11/2025 ). Liu Wire-bonding to MLR1 prototypes



Assembly practicing

P e va:. ill ! /;‘7' Foam rmg
N - /// f//l[ f v “‘ W * ,
‘ ] i T : :
Foam Iongeron
3D-printed ring

Gluing of foams and additional supports

Assembled first prototype layer of ITS3
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Detector Service Electronics

e 1 Detector Power Board for central power distribution, control and monitoring

ard
d control BO 2 slow contro!

ion, monitoring >
’

12 Segmente

power regulat

On\/erterS;
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ITS3: Key achievements and impact

ITS3: replaces inner ITS2 layers with wafer-scale, curved 65 nm CMOS sensors, achieving

Physics impact: improved vertexing precision and reduced backgrounds for heavy-flavour and low-mass dielectron
measurements

Innovation: first truly cylindrical tracker with wafer scale stitched sensors

Broader reach: enabling technology for EIC, CEPC,, FCC-ee, etc

Status: design specifics finalized; large-area prototypes in fabrication; installation foreseen for LS3 (2026—2030)

06/11/2025 J. Liu
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Backup



Mechanical prototypes

* Engineering models (EMs): used for design development, a mixture of final-grade components and commercial components

EM1

* Breadboard models (BBMs): test samples and initial prototypes, partially representative of some of the final model features

BBM3

Thermoelastic
test

Thermal test,
Aeroelastic test
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EM models with service
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ALICE 3

Novel and innovative detector concept

Compact and lightweight all-silicon detector
Retractable vertex detector
Superconducting magnet system
Continuous readout

— 100
E_i_- AIéCE 1
> L
()]
3 \ ALICE 2
= ® Run3
= % ALICE 2
& 0 % Rund
©
| =
K]
= @
o] '
3 ALICE 3
Qo
£
£
S 1
1 10 100 1000

Acceptance (An)X Pb-Pb interaction rate (kHz)
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ALICE 3 Lol: CERN-LHCC-2022-009

FCT

Tracker
TOF

RICH
ECal

Magnet
Absorber
Muon identification
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ALICE 3 - Vertex detector

* 3 layers of wafer-size, ultra-thin, curved, CMOS MAPS inside the
beam pipe in secondary vacuum

* Retractable configuration thanks to movable petals: distance of 5
mm from beam axis for data taking and 16 mm at beam injection

e Similar concept to LHCb VELO, but in barrel configuration

* Unprecedent spatial resolution: o, ~ 2.5 um

e Extremely low material budget: 0.1% per layer

* Radiation tolerance requirements: 300 Mrad + 10'° 1MeV n,, /cm?

’é‘“rg | AL RS | LB B ALY Y """E
= f ALICE 3 study T
5 [ I o
S 10°F n=0 R_=100cm
e T —— Layout V1 /
e | .Ix2 e
2 10°F - N /S ) N
:‘é - LHCb VELO concept unitinmm
& 1oL Open
1 g n R&D challenges: radiation hardness,
2 : ALICE 3 . . -
i g technology feature size and cooling Bread. Board M‘fd?' 3
BN PO PP (IO R 3D-printed aluminium petals
107 107 1 10 10°

p. (GeV/c) 0.5 mm wall thickness
:
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ALICE 3 - Tracker

* Middle layers + outer tracker

8+ 2x9 tracking layers (barrel + disks)
* 60 m? silicon pixel detector based on CMOS

MAPS technology

* Largely leverages ITS2 and ITS3 experience
* Compact:r,,,~80cm, z,,,+3.5m
* Large coverage: x4 n
* Time resolution: ~100 ns
* Sensor pixel pitch of ~50 um for 6,5s= 10 um
* Low power consumption: ~ 20 mW/cm?
* Low material budget: ~1% X, per layer

QOuter Tracker
Disks

R&D challenges: module integration, high yield industrial mass production, low power consumption while maintaining
timing performance and power distribution

1\M5‘\\\\ \\\\ \ \\ \~-- Tﬂf? / / // / /// = "//JP.H/‘H

\

=3 R N | R | =30
Tracker { _—

— ——

0 8 5 4 3 2 1 0 -1 -2 -3 A -5 -6 0

Z(m)
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