
## 首届ALICE实验与重离子物理讲习班

The 1st ALICE Experiment and Heavy-Ion Physics School









### **ALICE Data Preparation**

Jian Liu (刘剑) University of Liverpool

3 - 10 November 2025 | Fudan University, Shanghai, China

# Why DPG matters?

**DPG:** Data Preparation Group

Useful link (the ALICE DPG TWiki):

https://twiki.cern.ch/twiki/bin/viewauth/ALICE/AliceDPG

#### **Activities**

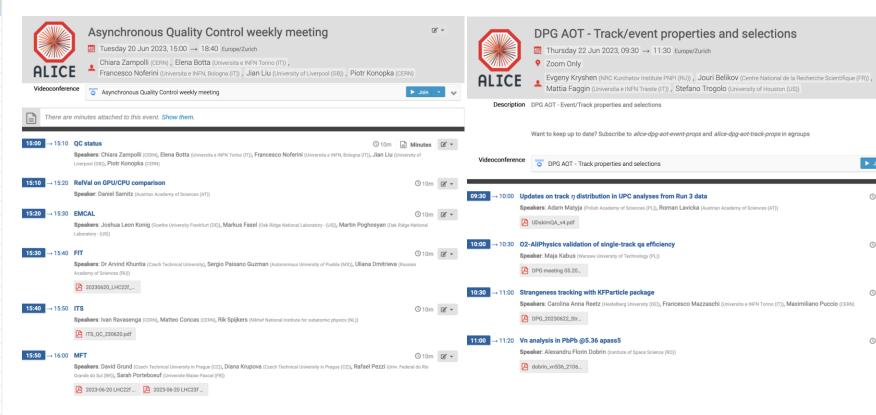
TWiki > ALICE Web > AliceDPG (2025-07-22, CatalinLucianRistea)



#### ALICE Data Preparation Group (DPG) Home Page

#### Table Of Content

- ↓ Organization, coordination, meetings
- ↓ DPG software
- ↓ Raw data production
- ↓ Monte Carlo production
  - ↓ General information
  - ↓ Lists of Monte Carlo productions
  - ↓ Run3 specific information on Monte Carlo productions
- ↓ Known issues
- Known issues in Monte Carlo productions
- ↓ AOD production
- ↓ Quality Assurance / Quality Control
  - ↓ QA/QC organization, material and contacts
  - → Run Lists
  - ↓ Analysis QA/QC
- ↓ Analysis Tools
  - Event selection and properties (AOT events)
  - → Track selection and properties (AOT tracks)
- ↓ Useful links


The Data Preparation group is responsible for **steering and coordinating** the **reconstruction of the data** collected by Alice and the preparation and the execution of the **Monte Carlo simulations**.

It also in charge of **organizing** the **Quality Assurance** of the reconstructed and simulated data (at the detector, tracking and particle identification levels) and of **developing** and improving the **Quality Assurance tools** for future runs.

The third area of responsibility of the DPG is in the preparation and maintenance of the **Analysis Objects and Tools**, which includes the production, maintenance, quality assurance and bookkeeping of the **AOD** (Analysis Object Data) files, as well as the coordination of the groups working on **event selections and properties** and **track selections and properties**.

### Main activities

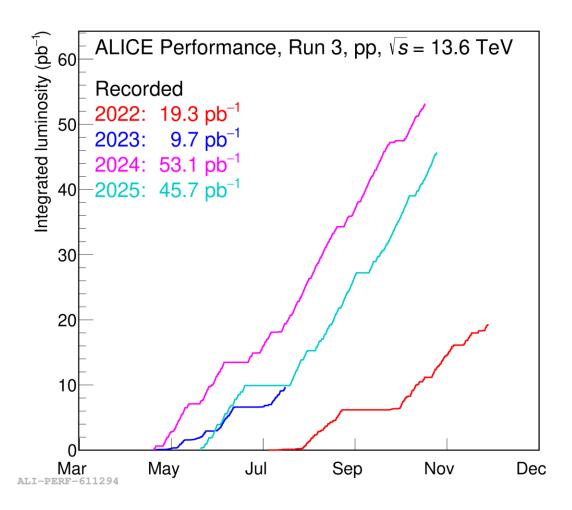
| Production                      | Description                                                                                                                         |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                                                                                                                                     |
| .HC22t_apass3                   | LHC22t - apass3 of LHC22t - 13.6 TeV, EPN, O2-3522                                                                                  |
| .HC22r_apass3                   | LHC22r - apass3 of LHC22r - 13.6 TeV, CPU, O2-3522                                                                                  |
| HC22p_apass3                    | LHC22p - apass3 of LHC22p - 13.6 TeV, EPN, O2-3522                                                                                  |
| .HC22m_apass3_relval_epn3_nogpu | LHC22m - Release Validation 2 in view of apass3 of pp data from 2022, 13.6 TeV, EPN noGPU, O2-3564                                  |
| .HC22q_apass3                   | LHC22q - apass3 of LHC22q - 13.6 TeV, CPU, O2-3522                                                                                  |
| .HC22m_apass3_relval_epn2_debug | LHC22m - Release Validation 2 (debug) in view of apass3 of pp data from 2022, 13.6 To<br>EPN, O2-3540                               |
| .HC22m_apass3_relval_cpu2_debug | LHC22m - Release Validation 2 (debug) in view of apass3 of pp data from 2022, 13.6 To CPU, O2-3540                                  |
| .HC22m_apass3_relval_epn2       | LHC22m - Release Validation 2 in view of apass3 of pp data from 2022, 13.6 TeV, EPN,<br>Q2-3540                                     |
| .HC22m_apass3_relval_cpu2       | LHC22m - Release Validation 2 in view of apass3 of pp data from 2022, 13.6 TeV, CPU, O2-3540                                        |
| .HC22t_apass3_relval_cpu_bis    | LHC22t - Release Validation in view of apass3 of pp data from 2022, 13.6 TeV, CPU, updated tag, O2-3540                             |
| .HC22t_apass3_relval_cpu        | LHC22t - Release Validation in view of apass3 of pp data from 2022, 13.6 TeV, CPU, O2-3540                                          |
| .HC22o_apass3_relval_cpu        | LHC22o - Release Validation in view of apass3 of pp data from 2022, 13.6 TeV, CPU, O2-3540                                          |
| .HC22m_apass3_relval_epn        | LHC22m - Release Validation in view of apass3 of pp data from 2022, 13.6 TeV, EPN, O2-3540                                          |
| .HC22m_apass3_relval_cpu        | LHC22m - Release Validation in view of apass3 of pp data from 2022, 13.6 TeV, CPU, O2-3540                                          |
| .HC22s_apass4_meanvtx           | LHC22s - Calib pass to extract mean vertex calib after alignment and reco update, 10 C every 10 minutes - 5.36 TeV Pb-Pb, O2-3523   |
| .HC22o-test_apass2_meanvtx      | LHC220-test - Calib pass to extract mean vertex calib after alignment and reco update, CTFs every 10 minutes - 13.6 TeV pp, O2-3523 |
| .HC22t_apass2_meanvtx           | LHC22t - Calib pass to extract mean vertex calib after alignment and reco update, 10 C every 10 minutes - 13.6 TeV pp, O2-3523      |
| .HC22r_apass2_meanvtx           | LHC22r - Calib pass to extract mean vertex calib after alignment and reco update, 10 C every 10 minutes - 13.6 TeV pp, O2-3523      |
| .HC22q_apass2_meanvtx           | LHC22q - Calib pass to extract mean vertex calib after alignment and reco update, 10 C<br>every 10 minutes - 13.6 TeV pp, O2-3523   |
| .HC22p_apass2_meanvtx           | LHC22p - Calib pass to extract mean vertex calib after alignment and reco update, 10 C<br>every 10 minutes - 13.6 TeV pp, O2-3523   |
| .HC22o_apass2_meanvtx           | LHC22o - Calib pass to extract mean vertex calib after alignment and reco update, 10 C<br>every 10 minutes - 13.6 TeV pp, O2-3523   |
| .HC22h_apass2_residuals2        | LHC22h - Low rate runs residuals extraction (2), O2-3512                                                                            |
| .HC22m_apass2_meanvtx           | LHC22m - Calib pass to extract mean vertex calib after alignment and reco update, 10 devery 10 minutes - 13.6 TeV pp, O2-3523       |
| .HC22t_apass2                   | LHC22t - apass2 of LHC22t on CPU - 13.6 TeV pp, O2-3464                                                                             |
| .HC22q_apass2                   | LHC22q - apass2 of LHC22q on CPU - 13.6 TeV pp, O2-3464                                                                             |
| .HC22t_apass2                   | LHC22t - apass2 of LHC22t on EPN - 13.6 TeV pp, O2-3464                                                                             |
| .HC22j_apass2_residuals         | LHC22j - Low rate runs residuals extraction, O2-3512                                                                                |
| .HC22h_apass2_residuals         | LHC22h - Low rate runs residuals extraction, O2-3512                                                                                |
| .HC22f_apass2_residuals         | LHC22f - Low rate runs residuals extraction, O2-3512                                                                                |
| .HC22p_apass2                   | LHC22p - apass2 of LHC22p on CPU - 13.6 TeV pp, O2-3464                                                                             |
| HC22r_apass2                    | LHC22r - apass2 of LHC22r on CPU - 13.6 TeV pp, O2-3464                                                                             |

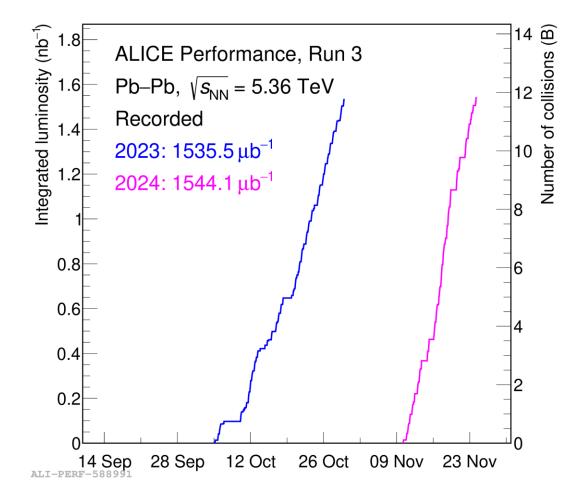


https://indico.cern.ch/category/8532/

https://indico.cern.ch/category/8451/

③30m 🗷 🕶

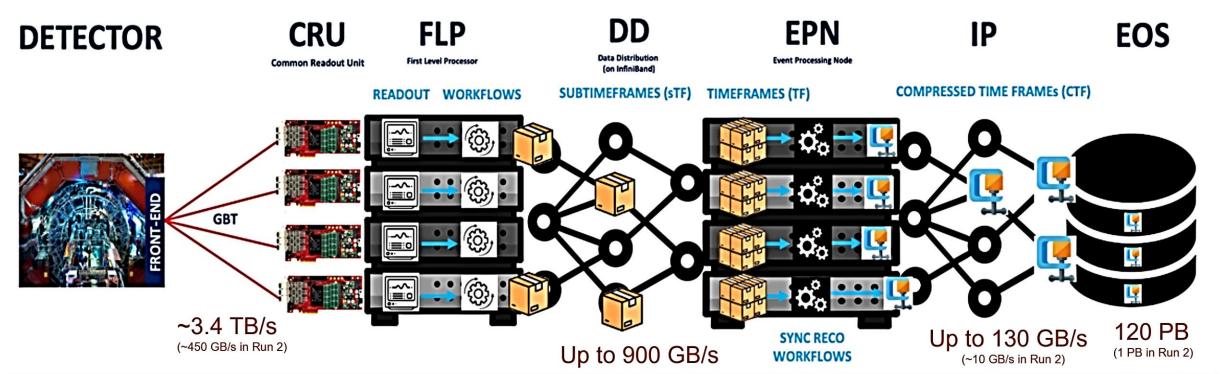

③30m 🗷 🕶


③30m 🗷 🕶

③20m 🗷 🕶

https://alimonitor.cern.ch/

## Where do we stand?






# Online/Offline (O<sup>2</sup>)

#### Targeting to record large minimum-bias sample

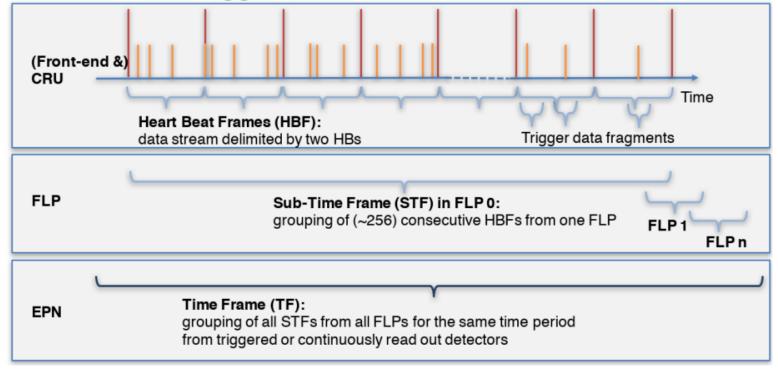
- All collisions stored for main detectors with continuous readout in combination with triggered detectors
- Extreme online data compression (~3.4 TB/s → ~0.1 TB/s) → GPUs
  to speed up online (and offline) processing
- First level processors (FLP)
  - Readout of detectors (3 TB/s) and raw data processing
  - 200 nodes in total
- Event processing nodes (EPN)
  - Synchronous/asynchronous event reconstruction
  - 280 nodes each with 8 GPUs (extended to 350 nodes)



### Heart beat and time frame

#### Heart Beat (HB)

issued in continuous & triggered modes to all detectors


#### Physics trigger

can be sent to upgraded detectors will be sent to non-upgraded detectors

#### HBF and TF rates programmable Typical values:

- HB: 1 per orbit, 89.4 μs: ~10 kHz
- TF: 1 every ~20 ms: ~50 Hz
- → 1 TF = ~256 HBF

#### Continuous & Triggered read-out



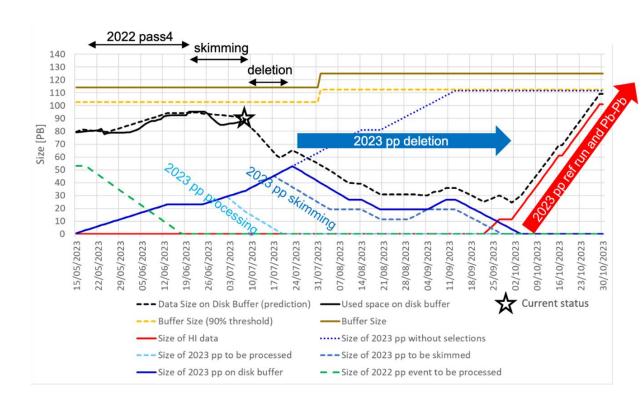
- HB allows synchronization and TF sampling from detectors with continuous and triggered readouts
- Synchronized with LHC clock
- HBF is the smallest chunk of data which is inspected by CTP and can be dropped if the quality is bad

LHC revolution frequency is ≈ 11 245 Hz

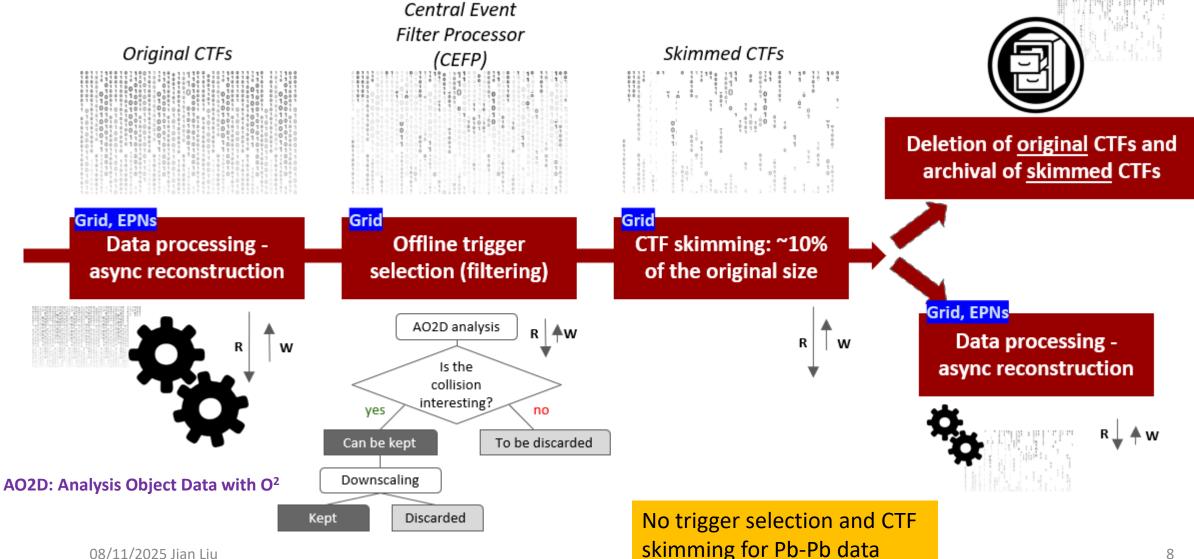


Each proton bunch completes one full turn around the ring every  $1/11245 \approx 89.4 \mu s$ , know as an orbit.

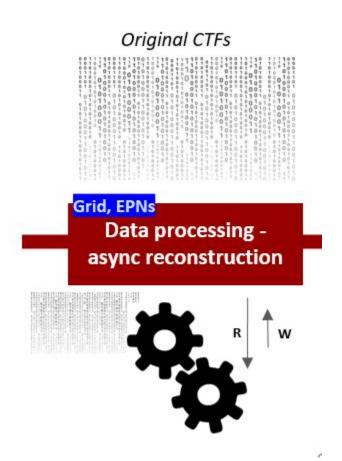



The ring is divided into 3 564 RF buckets




One bunching crossing (BC) is  $T_{crbit}/3564 = 24.95$  ns

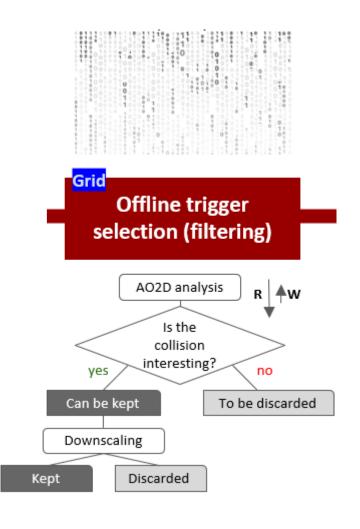
# Challenges for pp data in Run 3


- Very large data sample collected in pp collisions
  - ~9 PB of data taken every week
    - Data are stored in the so-called CTF (Compressed Time Frame) files
    - Organized in 10 minutes long folders in alien
  - Disk buffer at P2 is ~135 PB
  - Considering ~21 weeks of pp data taking → ~190 PB from pp data taking
  - This alone exceeds the O2 buffer space, not including the fact that on the buffer we need to keep some old data
    - detector data
    - Pb-Pb from previous year
    - other data
- Solution: reduce the size of the CTFs by applying an offline trigger selection (OTS); CTFs are then re-written in the so called "skimmed CTFs"

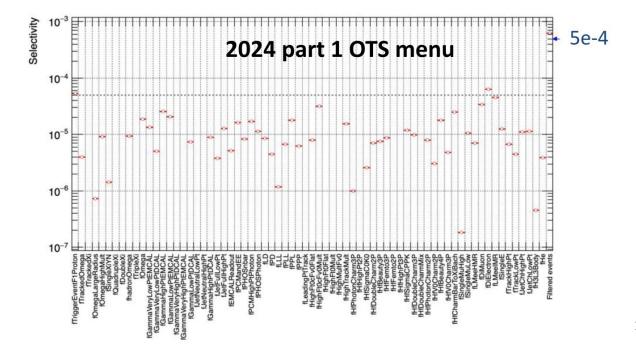


# Asynchronous data processing for pp

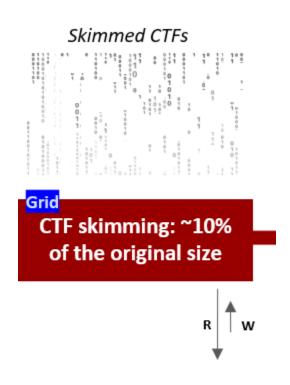



# pp data processing: C/APass




- 1. Calibration Pass (CPass): first reconstruction of the data, triggered automatically, runs on 10% of the CTFs, selected in a controlled-random way
- 2. Manual calibration to fix online calibrations, improve others, and QC to collect feedback from data quality
  - First assessment happens already in Online; async reconstruction allows to validate and possibly reject some data
- 3. APass1 (Asynchronous Pass): first full reconstruction of the data, triggered by completion of manual calibration and QC
- 4. After APass1, TPC PID calibration for analysis is extracted
  - Neural Network approach

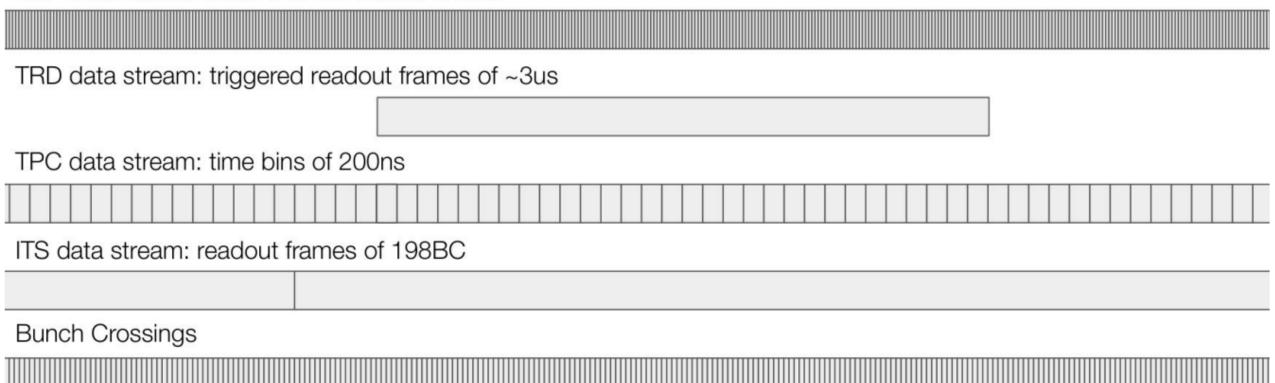
NB: in case of major issues, a data pass may need to redo.


# pp data processing: offline trigger selection



- Offline Trigger Selection (OTS): analysis on AO2Ds from APass1 to identify collisions interesting for analysis
  - 1. Selected BCs are identified by different analyses
  - 2. Total selectivity budget is of the order of 5e<sup>-4</sup> and it is shared among the PWGs
    - Goal: final CTF compression of the order of 4%



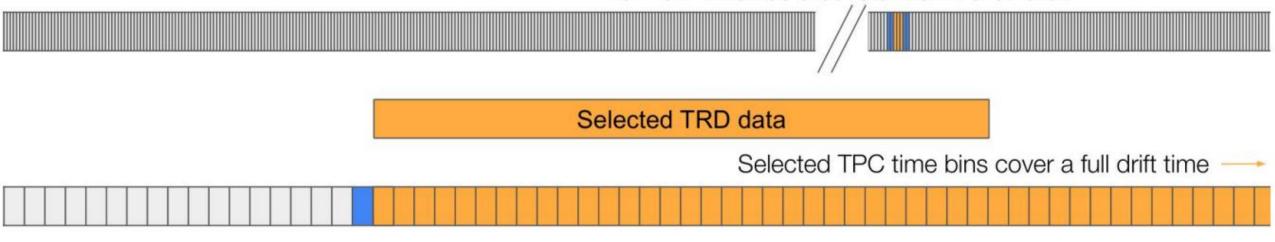

# pp data processing: CTF skimming



- 1. CTF skimming: following the decision of the OTS, CTFs are read again, and skimmed CTFs are written out selecting only the interesting BCs, with margin
  - 1. Margin needed in order to keep the full event information for all detectors (e.g. in TPC we keep 4000BC, a drift time)
  - 2. Extra margin of 1000BC added for safety
- 2. Original CTFs are then deleted (for good!)
  - 1. A 5 per mille MinBias sample is kept
    - 1. 2022: 1 pb<sup>-1</sup> was kept (larger sample)
    - 2. 2023: 0.5 pb<sup>-1</sup> was kept
- 3. Further reconstruction passes can happen only on the skimmed CTFs (and the MinBias sample)
- 4. Since skimmed CTFs are only a few percent of the size of the original ones, further processing is fast
- 5. apass1\_skimmed follows
  - 1. e.g. 24al
    - 1. apass1 output: 5 PB
    - 2. apass1\_skimmed: 230 TB  $\rightarrow$  <5%

# CTF skimming

TOF data stream: stream of hits sorted in time




- The CTF reader has been modified to read, for each detectors, only the data related to the selected BC
  - These data will contain pile-up for most detectors due to their ROF being larger than the average distance between two collisions

#### Pictorial view of the data stream of 4 barrel detectors

# CTF skimming

TOF raw time has a constant shift of 1/3 orbit



#### Selected ITS ROF

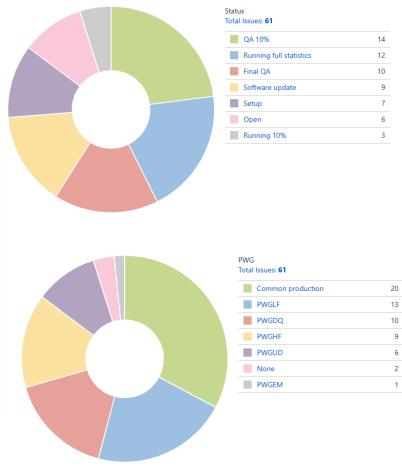


Selected BC + tolerance due to finite collision time resolution

When selecting an event, we do not define only a selected BC, but a window of selected BCs for two reasons

- The collision time resolution is finite, and we allow for a 4-sigma window around the measured collision time
- The found collision is associated at analysis level to the closest T0 signal, that might be few tens of BCs away

# Data productions

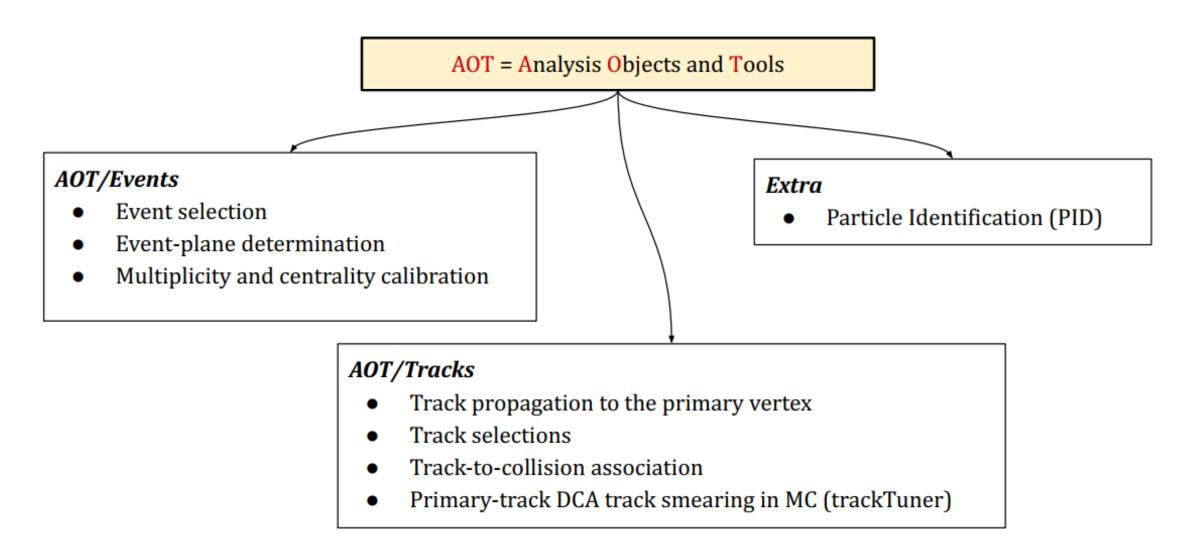

https://alimonitor.cern.ch/production/raw.jsp

|                               |                                                                                                                                    |              |         |                 |      | RAW Production                | Cycles  |      |                   |     |                |             |            |            |                                                                                                                      |            |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|-----------------|------|-------------------------------|---------|------|-------------------|-----|----------------|-------------|------------|------------|----------------------------------------------------------------------------------------------------------------------|------------|
|                               |                                                                                                                                    |              |         |                 |      |                               |         | _    |                   |     |                |             | <b>-</b>   |            | Processing re                                                                                                        |            |
|                               |                                                                                                                                    |              |         |                 |      | Raw data                      |         | Reco | nstructed<br>ESDs | 1   |                | Output      | Timing     |            | Software versions                                                                                                    | >>         |
| Production                    | Description                                                                                                                        | Col.         | Status  | Run Range       | Runs | Chunks Size                   | Chunks  | %    |                   | %   | Events         | Size        | Running    | Saving     |                                                                                                                      | Err        |
| LHC25ai_apass1_skimmed        | LHC25ai - apass1_skimmed of LHC25ai - 13.6<br>TeV, CPU, O2-6261                                                                    | <i>⊗</i> рр  |         | 566017 - 566123 | 7    | 430,850 3.838<br>PB           | 105,760 | 25%  | 16.61<br>TB       | 1%  | 1,382,086,015  | 16.61<br>TB | 15y 58d    | 1y 101d    | O2PDPSuite::async-async-2025-pp-apass1-v3-slc<br>alidist-async-2025-pp-apass1-v3                                     | c9-        |
| LHC25am_apass1                | LHC25am - apass1 of LHC25am - 13.6 TeV, CPU, O2-6439                                                                               | <i></i> ⊘ рр | Running | 566493 - 566579 | 8    | 613,016 <sup>5.463</sup> PB   | 529,341 | 86%  | 415.9<br>TB       | 8%  | 78,796,262,564 | 415.9<br>TB | 330y 24d   | 22y 120d   | O2PDPSuite::async-async-2025-pp-apass1-v3-slc<br>alidist-async-2025-pp-apass1-v3                                     |            |
| LHC25ai_skimming              | LHC25ai - CTF skimming and re-writing of LHC25ai - 13.6 TeV, O2-6261                                                               | <i></i> ⊘ рр | Running | 566017 - 566123 | 7    | 430,850 <sup>3.838</sup> PB   | 0       | 0%   | 185.6<br>TB       | 4%  | 0              | 185.6<br>TB | 13y 177d   |            | O2PDPSuite::async-async-2025-pp-apass1-v3-slc<br>alidist-async-2025-pp-apass1-v3                                     | 3-2        |
| LHC25ah_apass1_sampled        | LHC25ah - apass1_sampled of LHC25ah - 13.6<br>TeV, CPU, O2-6261                                                                    | <i>6</i> рр  | Running | 564704 - 565805 | 98   | 6,640,043 <sup>59.15</sup> PB | 33,227  | 1%   | 26.01<br>TB       | 8%  | 4,998,082,090  | 26.01<br>TB | 20y 234d   | 1y 321d    | O2PDPSuite::async-async-2025-pp-apass1-v3-slc<br>alidist-async-2025-pp-apass1-v3                                     | :9-<br>3-2 |
| LHC24aq_apass1_muon_matching4 | LHC24aq - apass1 - pp 13.6 TeV, Reconstruction<br>of one 2024 ppRef run for muon alignment studies,<br>replay updated tag, 02-6245 | <i></i> рр   | Running | 559408 - 559408 | 1    | 167,156 <sup>1.492</sup> PB   | 2,406   | 1%   | 2.437<br>TB       | 11% | 469,096,270    | 2.437<br>TB | 242d 6:39  | 4d 13:03   | O2PDPSuite::daily-20251026-0000                                                                                      | )-1        |
| LHC24ar_apass3                | LHC24ar - Pb-Pb 5.36 TeV, apass3 of 5.36 TeV Pb-Pb 2024 data, CPU, plus helper EPN, O2-6321                                        | 🔗 РЬРЬ       | Running | 559631 - 559903 | 6    | 127,851 <sup>1.126</sup> PB   | 108,733 | 85%  | 87.14<br>TB       | 8%  | 456,324,479    | 87.14<br>TB | 107y 318d  | 5y 215d    | O2PDPSuite::async-async-2024-pbpb-apass3-v<br>slc9-alidist-async-2024-pbpb-apass3-v2                                 |            |
| LHC24ar_apass3                | LHC24ar - Pb-Pb 5.36 TeV, apass3 of 5.36 TeV Pb-Pb 2024 data, EPN-Mi100, O2-6321                                                   | 🔗 РЬРЬ       | Running | 559574 - 559595 | 2    | 5,104 <sup>42.09</sup> TB     | 1,982   | 39%  | 1.602<br>TB       | 9%  | 8,009,332      | 1.602<br>TB | 1y 135d    | 9d 19:26   | O2PDPSuite::async-async-2024-pbpb-apass3-v<br>slc9-alidist-async-2024-pbpb-apass3-v2                                 |            |
| LHC24ar_apass3                | LHC24ar - Pb-Pb 5.36 TeV, apass3 of 5.36 TeV Pb-Pb 2024 data, CPU, Polaris, O2-6321                                                | 🔗 РЬРЬ       | Running | 559575 - 559901 | 5    | 164,515 <sup>1.463</sup> PB   | 112,718 | 69%  | 91.28<br>TB       | 8%  | 476,400,532    | 91.28<br>TB | 212y 206d  | 8y 183d    | O2PDPSuite::async-async-2024-pbpb-apass3-v<br>slc9-alidist-async-2024-pbpb-apass3-v2                                 |            |
| LHC25ac_apass1_sampled        | LHC25ac - apass1_sampled of LHC25ac - 13.6 TeV, CPU, O2-6014                                                                       | <i></i> ⊘ рр | Running | 563182 - 563998 | 53   | 3,792,025 33.79<br>PB         | 18,948  | 0%   | 15.23<br>TB       | 8%  | 2,886,886,293  | 15.23<br>TB | 12y 81d    | 265d 14:07 | O2PDPSuite::async-async-2025-pp-apass1-v3-slc<br>alidist-async-2025-pp-apass1-v3                                     |            |
| LHC24ar_apass3_test_mi100     | LHC24ar - Pb-Pb 5.36 TeV, test apass3 of 5.36 TeV<br>Pb-Pb 2024 data, production tag, EPN-Mi100, O2-<br>6321                       |              | Running | 559827 - 559827 | 1    | 62,312 <sup>571.2</sup> TB    | 1,889   | 3%   | 1.57<br>TB        | 9%  | 8,024,751      | 1.57 TB     | 1y 115d    | 8d 11:13   | O2PDPSuite::async-async-2024-pbpb-apass3-v<br>slc9-alidist-async-2024-pbpb-apass3-v2                                 |            |
| LHC24ar_apass3_test_mi50      | LHC24ar - Pb-Pb 5.36 TeV, test apass3 of 5.36 TeV<br>Pb-Pb 2024 data, production tag, EPN-Mi50, O2-<br>6321                        |              | Running | 559827 - 559827 | 1    | 62,312 <sup>571.2</sup> TB    | 61,654  | 99%  | 50.75<br>TB       | 8%  | 253,110,112    | 50.75<br>TB | 41y 320d   | 177d 11:46 | O2PDPSuite::async-async-2024-pbpb-apass3-v<br>slc9-alidist-async-2024-pbpb-apass3-v2                                 |            |
| LHC25am_apass1_tpc_nn_cpu     | LHC25am - apass1 of LHC25am - for TPC NN,<br>13.6 TeV, CPU, O2-6360                                                                | <i></i> рр   | Running | 566696 - 566697 | 2    | 10,184 90.62<br>TB            | 10,148  | 100% | 9.024<br>TB       | 9%  | 1,727,605,940  | 9.024<br>TB | 8y 221d    | 14d 14:53  | O2PDPSuite::async-async-2025-pp-apass1-v3-slc<br>alidist-async-2025-pp-apass1-v3                                     |            |
| LHC25am_apass1_tpc_nn         | LHC25am - apass1 of LHC25am - for TPC NN, 13.6 TeV, EPN, O2-6360                                                                   | <b>⊘</b> рр  | Running | 566696 - 566697 | 3    | 15,176 <sup>134.4</sup> TB    | 590     | 4%   | 457.8<br>GB       | 8%  | 87,652,859     | 457.8<br>GB | 133d 10:43 | 1d 14:11   | O2PDPSuite::async-async-2025-pp-apass1-v3-slc<br>alidist-async-2025-pp-apass1-v3-<br>O2PDPSuite::daily-20251010-0000 | -2,        |

# MC productions

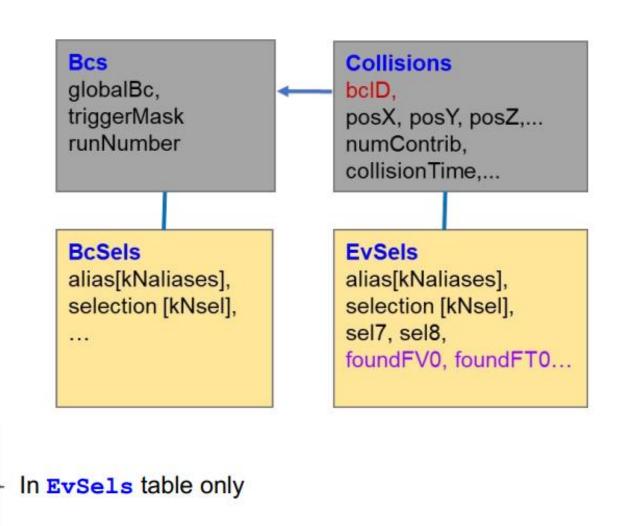
#### https://alimonitor.cern.ch/MC/

| Create Production »              |                                        | MonteCarlo production reques | ts (show details)                 |                                                                            |     |                   |          |
|----------------------------------|----------------------------------------|------------------------------|-----------------------------------|----------------------------------------------------------------------------|-----|-------------------|----------|
|                                  | Production tag and anchoring           |                              |                                   | Request tracking                                                           |     | Current<br>status | Events   |
|                                  | Files                                  |                              | - Any - 🗸                         |                                                                            |     |                   |          |
| Tag                              | Jira<br>tickets Git AliEn Anchor prod. | Pass                         | Collision Energy Rt<br>(GeV) list | n Comment<br>st                                                            | PWG | Production Reques | ted Gene |
| LHC25k4a_2                       |                                        | apass4                       | Pb-Pb 5,360                       | 1 - HF c, b enriched CRMode2 embedded (1signal-2bkg embedd pattern) in A   |     |                   |          |
| LHC25k4a_1                       | 😑 🚖 LHC23zzh                           | apass4                       | Pb-Pb 5,360                       | 1 - HF c, b enriched CRMode2 embedded (1signal-2bkg embedd pattern) in A   |     |                   |          |
| LHC25k3                          | 🖨 🚖 LHC24ap                            | apass1                       | p-p 5,360                         | 1 - Prompt charmonia to e+e- in pp at, (2024 - ppRef anchoring), O2-6433   |     |                   |          |
| LHC25k2                          |                                        | apass4                       | Pb-Pb 5,360                       | 1 - Prompt charmonia to e+e- in PbPb at, (2023 - pass5 anchoring), O2-6430 |     |                   |          |
| LHC25j1b                         |                                        | apass2                       | Pb-Pb 5,360                       | 1 - General-purpose, test for ITS perPrimaryVertexProcessing anchored to   |     |                   |          |
| LHC25h5_pp_residuals_yesdist     |                                        | apass1                       | p-p 13,600                        | 2 - General Purpose, anchored to apass1 of 2025 data, low-B data, TPC co   |     |                   | 1        |
| LHC25h5_pp_residuals_nodist      |                                        | apass1                       | p-p 13,600                        | 2 - General Purpose, anchored to apass1 of 2025 data, low-B data, TPC co   |     |                   | 2        |
| LHC25h5_nodist_yescorr_v2_oldtag | ☐ ☐ LHC24ar                            | apass2                       | Pb-Pb 5,360                       | 1 - General Purpose, anchored to apass2 of 2024 data, TPC correction map   |     |                   |          |
| LHC25h5_dist_v2_oldtag           |                                        | apass2                       | Pb-Pb 5,360                       | 1 - General Purpose, anchored to apass2 of 2024 data, TPC correction map   |     |                   |          |
| LHC25j9                          |                                        | apass7                       | p-p 13,600                        | 1 - Non-prompt psi(2S) -> 3/psi pi pi in pp at, (2022 - pass7 anchoring)   |     |                   |          |
| LHC25j7                          |                                        | apass4                       | Pb-Pb 5,360                       | 1 - Prompt Jpsi and psi(2S) in Pb-Pb collisions at forward rapidity (202   |     |                   |          |
| LHC25h5_nodist_yescorr_v2        |                                        | apass2                       | Pb-Pb 5,360                       | 1 - General Purpose, anchored to apass2 of 2024 data, TPC correction map   |     |                   |          |
| LHC25h5_dist_v2                  |                                        | apass2                       | Pb-Pb 5,360                       | 1 - General Purpose, anchored to apass2 of 2024 data, TPC correction map   |     |                   |          |
| LHC25j5                          |                                        | apass5                       | Pb-Pb 5,360                       | 1 - UD Simulation of forward dimuons anchored to apass5 of Pb-Pb data pe   |     |                   | 1        |
| LHC25b8a_v8                      | ⊟ ⊟ LHC24ar                            | apass2                       | Pb-Pb 5,360                       | 1 - High occupancy studies anchored to PbPb 2024 apass2, no distortions,   |     |                   |          |
| LHC25j4b                         |                                        | apass1                       | p-p 13,600                        | 1 - General-purpose, test for ITS deltaROF anchored to apass1 of pp 2025   |     |                   | 2        |
| LHC25j4a                         |                                        | apass1                       | p-p 13,600                        | 1 - General-purpose, test for ITS deltaROF anchored to apass1 of pp 2025   |     |                   | 2        |
| LHC25b4b6                        | ⊟ ⊟ LHC24a, LHC24q                     | apass1                       | p-p 5,360                         | 1 - General-purpose, anchored to apass1 of pp ref 2024 data, prod-v13, L   |     |                   | 88       |
|                                  | <u> </u>                               |                              | F 0.00                            |                                                                            |     |                   |          |



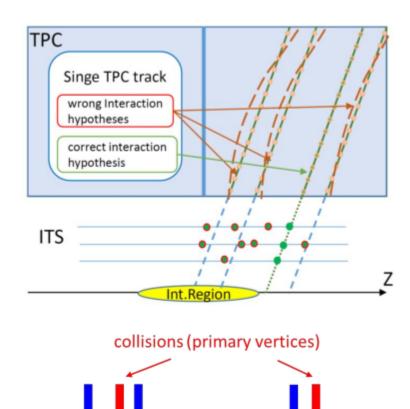

- General-purpose MC productions: managed by the DPG (one per collision system and reco pass)
- PWG-specific productions: requested by PWGs and processed after approval of the Physics Board
  - no PB approval needed if expected CPU time < 1 day at 10k cores</li>

# Two-tag mechanism in MC


- Finished and consolidated the 2-tag software approach of O2DPG:
  - 1 tag used for generation, GEANT and workflow logic (updated)
    - Stable tags for simulation released ~every 4 weeks
    - Naming scheme O2PDPSuite::MC-prod-2025-vXX
    - Stable MC Software Releases can be found at: https://aliceo2group.github.io/simulation/docs/mc-software-releases/#mc-software-releases
  - 1 tag used for reconstruction (fixed)
- 2-tag approach is converging and showing its benefits for software management, some bug fixes needed though

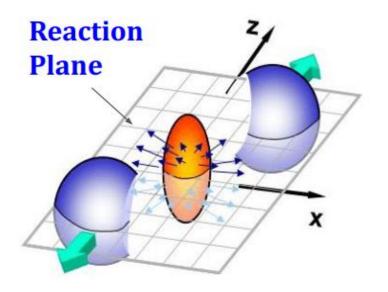
# Analysis objects and tools

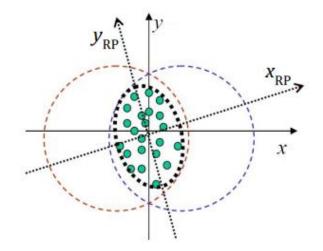



### AOT – event selection

- EvSels table joinable with Collisions table. To be used in analyses based on loops over Collisions (primary vertices), i.e. majority of ALICE analyses.
- BcSels table joinable with BCs table. To be used in analyses based on loops over BCs table such as muon arm UPCs, luminosity monitoring etc.
- Main contents:
  - aliases [kNaliases]: fired trigger aliases (trigger classes)
  - selection [kNsel]: decisions on single selection criteria
  - sel7, sel8 (historical names): selection decisions = logical AND of several selection criteria
  - foundFV0, foundFT0, foundBC: indices to FV0, FT0 and BC entries matched to current collision




# AOT – event selection challenges in Run 3


- TPC: tracks are drifting towards endcaps (~100 μs drift time)
  - z-time ambiguity for TPC-only tracks
- ITS integration time ~5 μs in pp (15 μs in Pb-Pb)
  - Several overlapping events (in 650 kHz INEL pp runs)
  - No precise timestamp
- z-time ambiguity for TPC tracks can be resolved via:
  - ITS-TPC matching  $\rightarrow \sim 100$  ns resolution
  - $\circ$  TOF matching → precise timing (resolution < 1 ns).
- Collision time uncertainty depends on
  - time resolution of single tracks
  - number of contributors
- Event selection challenge: most probable collision bc is not precise and might be shifted wrt bc with corresponding FIT signals
  - Might be a problem in high-rate environment
  - (e.g. typical distance between collisions in high-rate pp ~40 bcs)
- Solution: search for FIT info in neighbouring bcs and provide foundBC, foundFT0, foundFV0 indices + flags, trigger aliases and decisions corresponding to foundBC

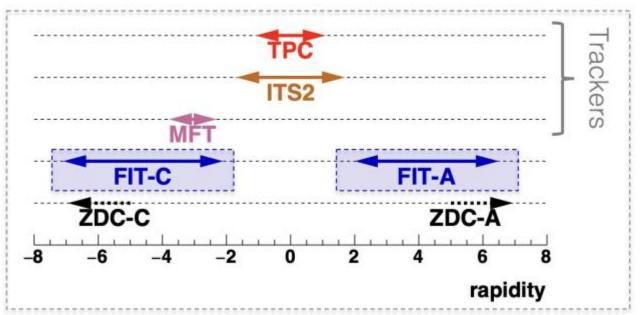


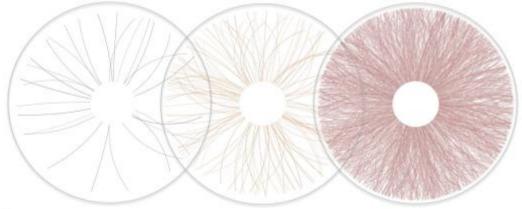
19

# AOT – event plane



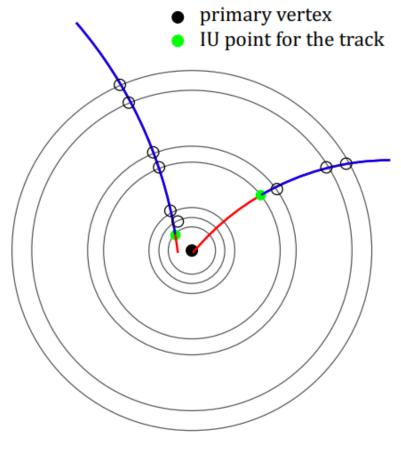



- In heavy-ion collisions:
  - colliding Pb nuclei can overlap partially
  - geometrical anisotropy → momentum anisotropy
  - origin of azimuthal anisotropy
- In anisotropic flow analyses:
  - Reaction plane → plane formed by the impact parameter vector b and the collision axis
  - In practice we cannot find RP but can only approximate and this approximation is known as Event Plane
  - Event Flow Vector " $Q_n$ " and Event Plane Angle  $\psi_n$  from the  $\underline{n}^{th}$  harmonics are defined as:


$$Q_{n,x} = \sum_{i} \omega_{i} \cos(n\varphi_{i}) \quad Q_{n,y} = \sum_{i} \omega_{i} \sin(n\varphi_{i})$$
  
$$\Psi_{n} = (1/n) \arctan(Q_{n,y}/Q_{n,x})$$

where  $\omega_i$  is weights and  $\phi_i$  is particle's azimuthal angle

# AOT- multiplicity/centrality


- Many analyses need the event multiplicity/centrality:
  - Study an observable as a function of multiplicity/centrality
  - Other tasks depends on multiplicity/centrality selection (e.g. PID, Q-vector, ...)





- Detectors used for multiplicity/centrality:
  - $\circ$  FT0: -3.3 <  $\eta$  < -2.1, 3.5 <  $\eta$  < 4.9
  - $\circ$  FV0: 2.2 <  $\eta$  < 5.0
  - $\circ$  FDD: -6.9 <  $\eta$  < -4.9, 4.7 <  $\eta$  < 6.3
  - Central barrel detectors → number of tracks used to fit the primary vertex (N\_PV<sub>tracks</sub>)

# AOT - track propagation to the PV

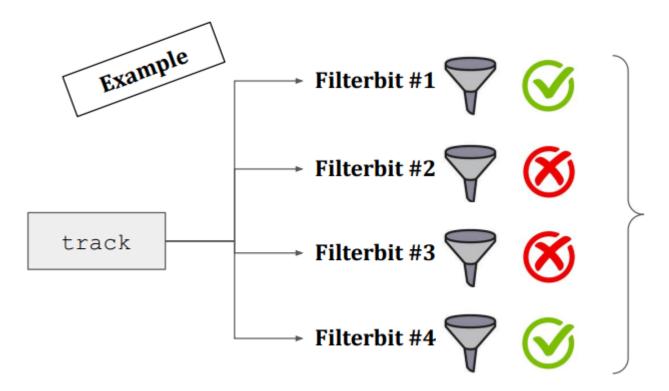


IU tracktrack propagated to PV

- In AO2Ds: TracksIU
  - IU: Innermost Update point
  - Track-parametrization at the IU written in AO2Ds
     → not the same radius for all tracks ↔ track.x()
  - Table written in the AO2Ds
- In analysis: Tracks
  - Track-parametrization after the propagation to the distance of closest-approach (DCA) to the primary vertex
  - In the workflow: dca<sub>XY</sub> and dca<sub>Z</sub> calculated as well
  - on-the-fly by the track-propagation workflow

#### processStandard

- track parameters
- dca<sub>xy</sub>, dca<sub>z</sub> values

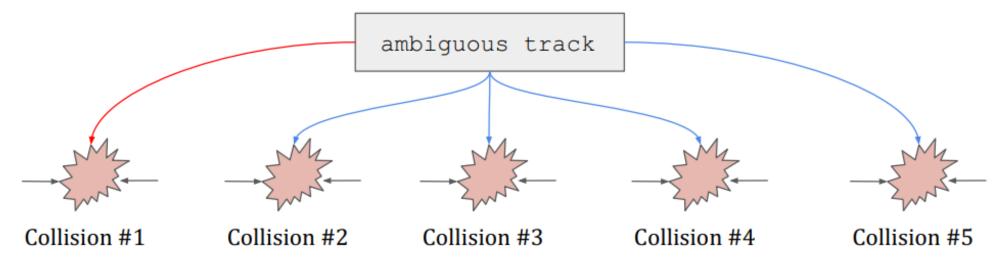

process functions available for analysis

#### processCovariance

- track parameters and covariance matrix
- dca<sub>XY</sub>, dca<sub>Z</sub> values and uncertainties
- → much more resources consumed!

### AOT – track selector

- For each (<u>propagated!</u>) track the following check is done: does it satisfy the selections defined in the *i*-th predefined set (filterbit)?
- Track-by-track filling of aod::TrackSelection table, according to the responses



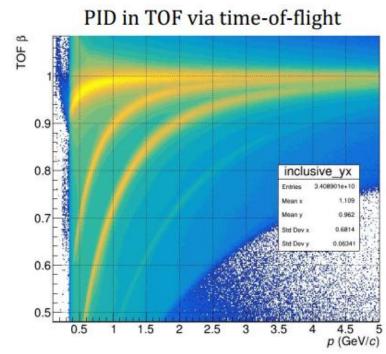

- This table contains for each track the flag for each filterbit
- To have a flag for each single cut: use the aod::TrackSelectionExtension table (not filled by default!)

aod::TrackSelection

|        | FB #1    | FB #2    | FB #3    | FB #4    |
|--------|----------|----------|----------|----------|
| track0 | <b>⊗</b> | 8        | 8        | 8        |
| track1 | 8        | <b>⊗</b> | 8        | 8        |
| track2 | <b>⊗</b> | <b>⊗</b> | <b>⊗</b> | 8        |
| track3 | <b>⊗</b> | <b>⊗</b> | <b>⊗</b> | <b>⊗</b> |
| track4 | 8        | 8        | <b>⊗</b> | 8        |

### AOT - track-to-collision associator




- Continuous readout → ambiguous tracks: tracks with more than 1 collision possible
- By <u>default</u>, in the <u>AO2D</u> the track.collisionId() is that of the <u>first compatible coll</u>ision in time
- track-to-collision-associator: duplication of the track to each collisions compatible in time
  - candidates!
    - → duplicates removable with analysis selections (topology)
  - 🙁 single-track analyses: signal duplication
    - → duplicates removed with specific analysis selections? To be studied in analysis

### AOT - PID in TPC and TOF



- Different particle species have separate distributions of dE/dx (TPC) and time-of-flight (TOF)
- In analysis: n<sub>g</sub> values are used

Tools/parameterizations provided by TPC, TOF experts (not by DPG!)



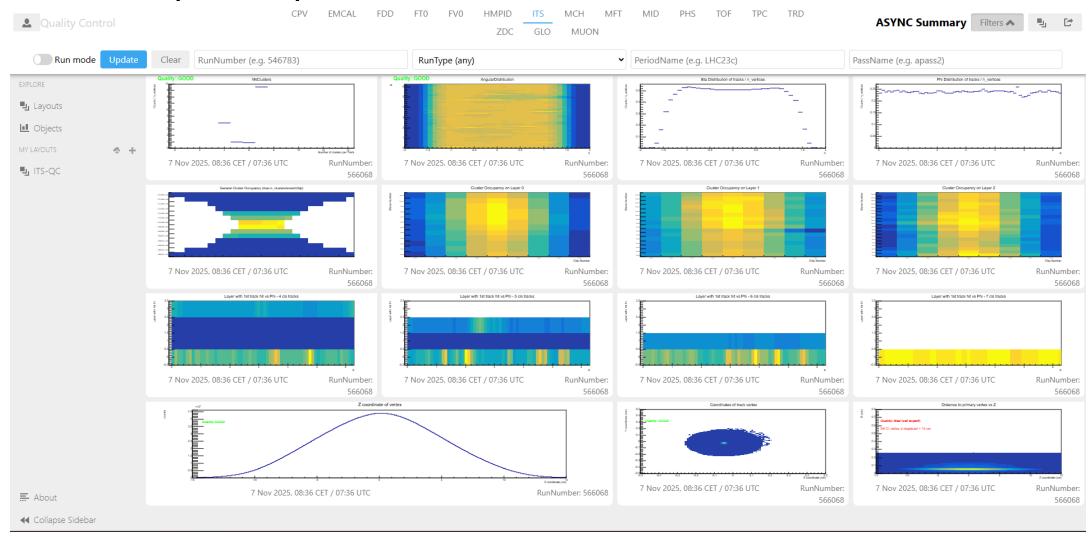
#### TPC

- Calibrations provided via Bethe-Block (BB) parametrizations and via Neural Network (use "NN" when available, list here)
  - In MC the dE/dx observed in data is reproduced by random-sampling the dE/dx parametrizations from data → "tune-on-data"
    - o  $n_{\sigma}$  centered at 0 and with  $\sigma=1$

# Asynchronous QC

- First validation of asynchronous reconstruction processing
  - Crucial for the assessment of the data quality and reconstruction performance
  - Detector-level tasks integrated and running steadily
- Same software as used at P2, but configuration modified to fit the async reconstruction
  - Including checks and new features
- Possibility to run post-processing tasks including trending
- Mainly run-by-run checks, including comparison of reconstruction passes...
  - Feedback should result in flagging the data
- ...and data vs MC
  - To validate MC settings, anchoring
- Weekly meetings on Tue at 3 pm (ZOOM meeting) and Friday 3 pm (minutes-only virtual meeting); daily meeting during Pb-Pb and light ion runs at 15:30
  - PWGs are warmly invited to attend and also welcome to report at async-QC meeting with material aimed at defining the data quality
  - Differential studies (e.g. vs IR, vs eta...) more suited to AOT meetings on Thu morning at 9:30 am

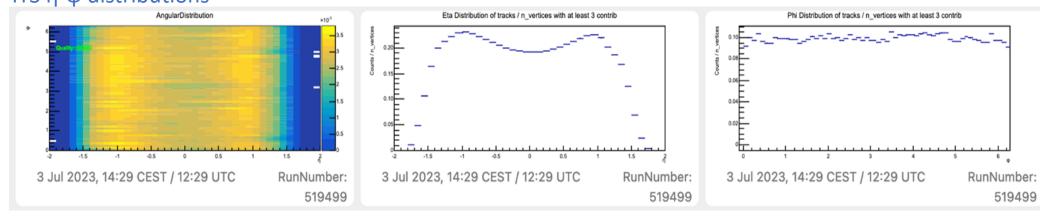
# Analysis QC


- After reconstruction, some basic analysis are run centrally in a children job
- They use the same sw as the reconstruction
- Very useful for QC
- Every PWG can add its own analysis and report at the aQC meeting (Tue 3 pm)

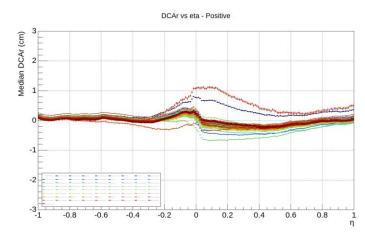
#### 

Most importantly the tasks from companies need to be put in a list called tasks. This will be translated into the common command-line

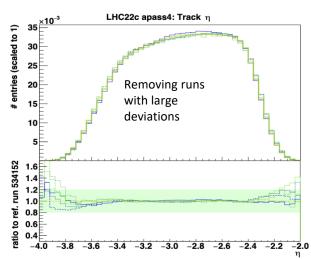
#### Analysis QC manual:


# QC GUI (QCG)

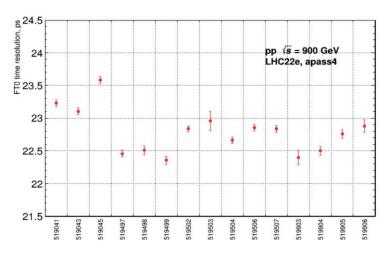



Example layout: <a href="https://ali-qcg.cern.ch/?page=layoutShow&layoutId=67c062a100b1fb4fb47985a9&tab=ITS">https://ali-qcg.cern.ch/?page=layoutShow&layoutId=67c062a100b1fb4fb47985a9&tab=ITS</a>

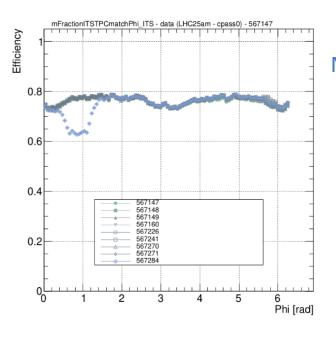
## QC from detectors


#### ITS $\eta$ - $\varphi$ distributions

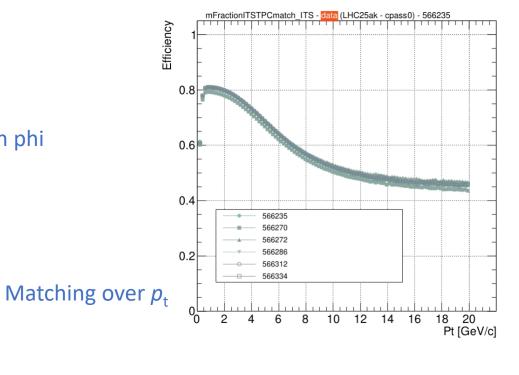


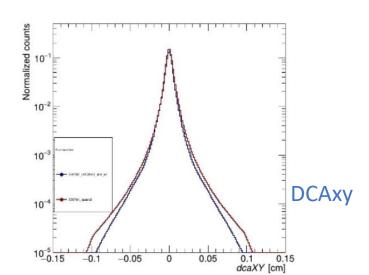

#### **TPC DCAr**

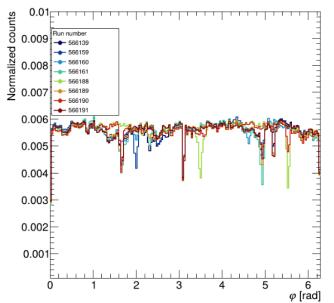



#### MFT tracks vs n




#### FT0 resolution



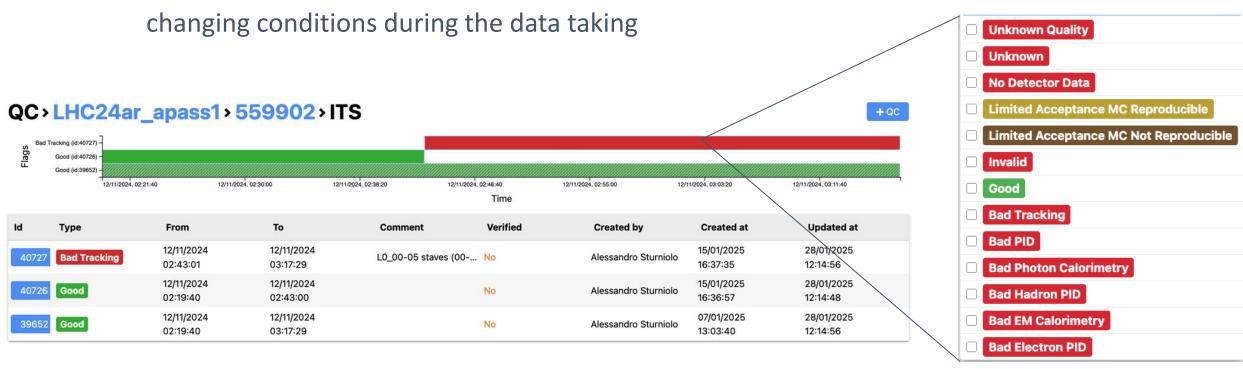


## QC from AOT



Matching in phi

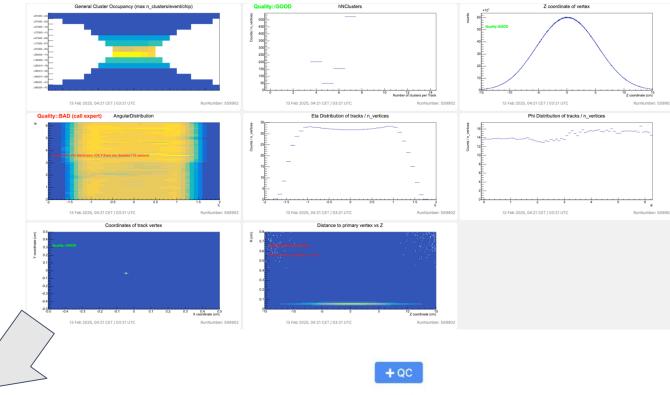




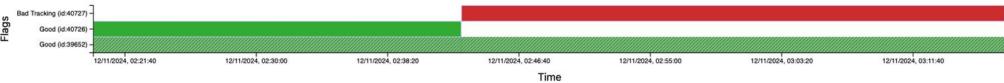



Tracks in phi

## The Run Condition Table (RCT)


RCT in Bookkeeping: <a href="https://ali-bookkeeping.cern.ch/?page=lhc-period-overview">https://ali-bookkeeping.cern.ch/?page=lhc-period-overview</a>

- Database that contains the quality flags of each detector participating in the data taking
- There is one table for each data taking period and data processing pass (including online)
- The table contains a set of quality flags for each run and each detector
- The quality flags are time-dependent:
  - A single run can have one or multiple flags for each detector, to reflect possibly

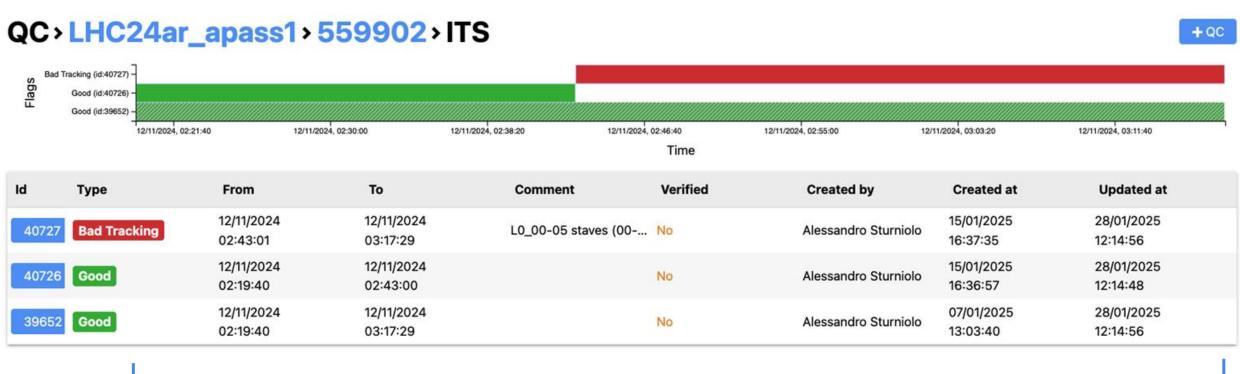



## From QC to RCT flags

- The time-dependent RCT flags are mainly set from the analysis of the QC plots
- Other sources of information can be used as well (ex. DCS)

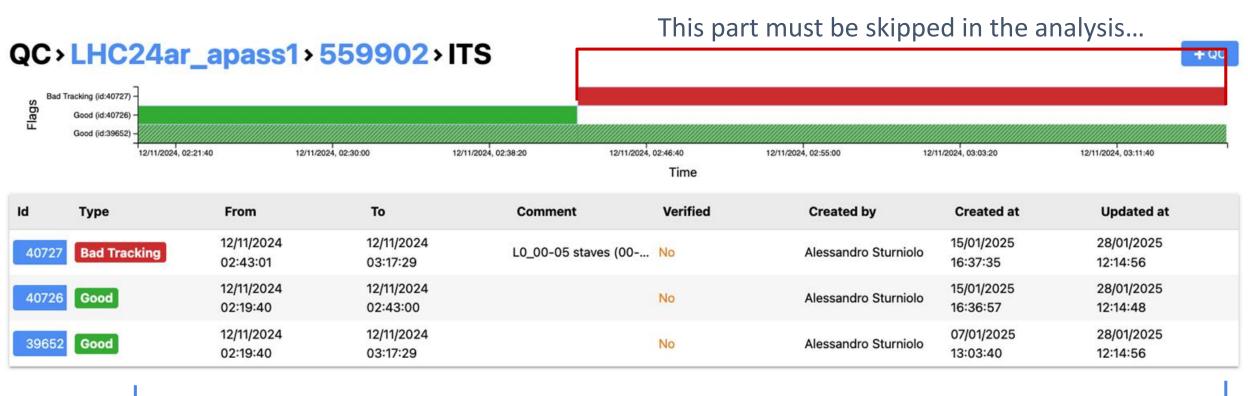


#### QC>LHC24ar\_apass1>559902>ITS




| ld    | Туре         | From                   | То                     | Comment             | Verified | Created by           | Created at             | Updated at             |
|-------|--------------|------------------------|------------------------|---------------------|----------|----------------------|------------------------|------------------------|
| 40727 | Bad Tracking | 12/11/2024<br>02:43:01 | 12/11/2024<br>03:17:29 | L0_00-05 staves (00 | No       | Alessandro Sturniolo | 15/01/2025<br>16:37:35 | 28/01/2025<br>12:14:56 |
| 40726 | Good         | 12/11/2024<br>02:19:40 | 12/11/2024<br>02:43:00 |                     | No       | Alessandro Sturniolo | 15/01/2025<br>16:36:57 | 28/01/2025<br>12:14:48 |
| 39652 | Good         | 12/11/2024<br>02:19:40 | 12/11/2024<br>03:17:29 |                     | No       | Alessandro Sturniolo | 07/01/2025<br>13:03:40 | 28/01/2025<br>12:14:56 |

- The official DPG DataSets are based on the detector quality flags set in the <u>RCT</u>
- The DPG DataSets include:
  - o CentralBarrelTracking (CBT): requiring FT0, ITS, TPC each with quality status Good or Limited Acceptance MC Reproducible
  - o **CBT\_hadronPID**: FT0, ITS, TPC, TOF each with quality status Good or Limited Acceptance MC Reproducible
  - o CBT\_electronPID: FT0, ITS, TPC TOF, TRD each with quality status Good or Limited Acceptance MC Reproducible
  - o CBT\_calo: FT0, ITS, TPC, EMC each with quality status Good or Limited Acceptance MC Reproducible
  - CBT\_muon: FT0, ITS, MCH, MID with quality status Good or Limited Acceptance MC Reproducible, TPC Good or Limited Acceptance MC Reproducible or BadPID
  - CBT\_muon\_global: FTO, ITS, MCH, MID, MFT with quality status Good or Limited Acceptance MC Reproducible, TPC Good or Limited Acceptance MC Reproducible or BadPID
- For official analyses, only the CBT\* DataSets must be used wherever available!
- The DataSets provide a granularity of a **full run**, hence they do not exploit the full potential of the information stored in the RCT


Runlists: <a href="https://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGRunLists\_3">https://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGRunLists\_3</a>
Runlists definitions: <a href="https://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGRunListsDef\_3">https://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGRunListsDef\_3</a>

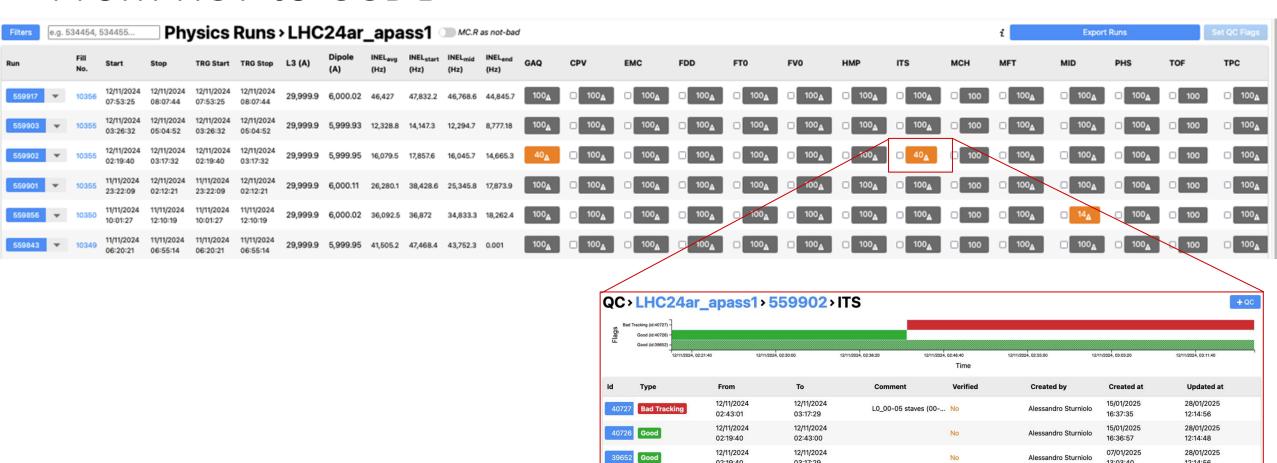
 The DataSets contain all runs for which at least part of the data is Good or "Limited Acceptance MC Reproducible"



This run is included in all the CBT\* DataSets

 The DataSets contain all runs for which at least part of the data is Good or "Limited Acceptance MC Reproducible"




This run is included in all the CBT\* DataSets

 The DataSets contain all runs for which at least part of the data is Good or "Limited Acceptance MC Reproducible"

#### QC > LHC24ar\_apass1 > 560012 > ITS Limited Acceptance MC Reproducible (id:40725) -Flags Good (id:39810) -15/11/2024, 03:00:00 15/11/2024, 03:30:20 15/11/2024, 03:30:20 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024, 03:00 15/11/2024 Time Verified Updated at ld Type To Created by Created at From Comment 15/11/2024 15/11/2024 15/01/2025 15/01/2025 Limited Acceptance Alessandro Sturniolo L5 18 stave went off No 02:55:30 09:38:32 16:35:20 16:35:20 15/11/2024 15/11/2024 09/01/2025 09/01/2025 Good No Alessandro Sturniolo 02:55:30 16:41:07 09:38:32 16:41:07

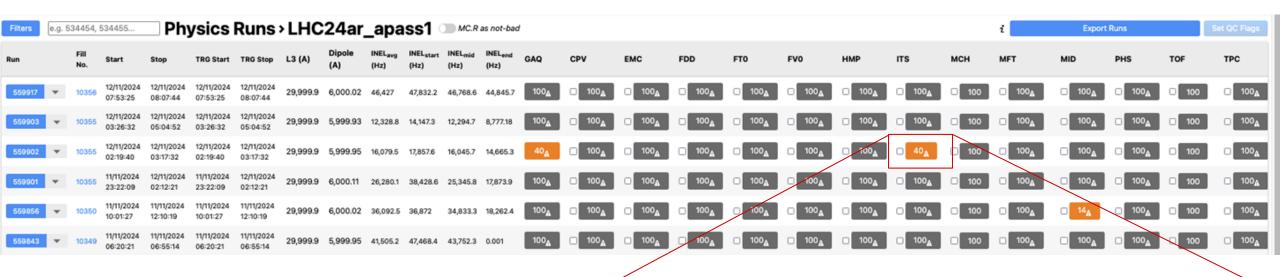
The "Limited Acceptance MC Reproducible" data are also included in the analysis, since the issues are expected to be reproduced in the MC

#### From RCT to CCDB



02:19:40

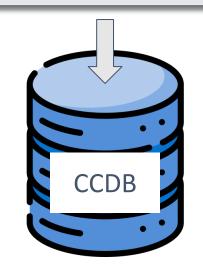
03:17:29

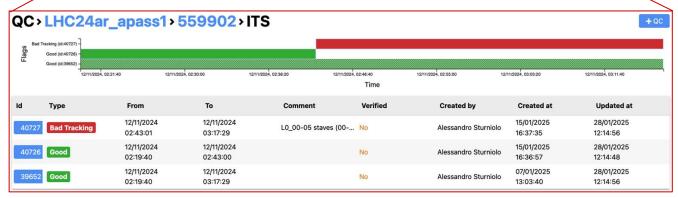

12:14:56

No

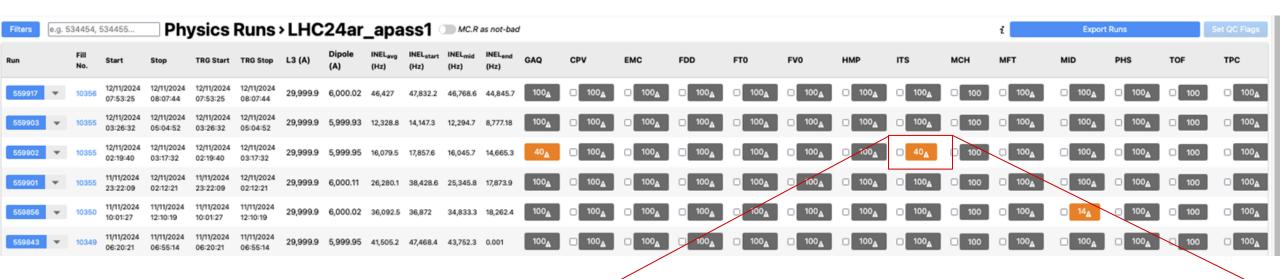
Alessandro Sturniolo

13:03:40


#### From RCT to CCDB



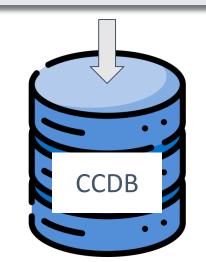

#### RCT CCDB Object


ITS Good from ... to ...

ITS Bad Tracking from ... to ...






#### From RCT to CCDB



#### **RCT CCDB Object**

ITS Good from ... to ...

ITS Bad Tracking from ... to ...





CCDB objects for all 2023 and 2024 periods available since mid-March.

For 2022 the RCT is only partly filled at the moment.

#### From CCDB to Physics Analysis

- The RCT CCDB objects have been integrated in the EventSelection code of O2Physics
- New column added in bcsels (joinable with bcs) and evsels (joinable with collisions):
  - see <u>Common/DataModel/EventSelection.h</u>
  - DECLARE\_SOA\_BITMAP\_COLUMN(Rct, rct, 32); //! Bitmask of RCT flags
- For every bc and collision, rct column is filled with the 32-bit mask taken from CCDB map:
  - mapRCT = ccdb->getSpecific<std::map<uint64\_t, uint32\_t>>("Users/j/jian/RCT", ts, mdata);
  - mapRCT contains a map of timestamps and corresponding RCT masks
    - typically one entry per run if no detector quality changes
    - new entry for each change of rct state
    - provides fine-grained quality selection on top of Runlists
  - rct mask set to 0 if CCDB object not found (no FATAL)
  - Offcial CCDB path available: RCT/Flags/RunFlags
  - The initial test path, Users/j/jian/RCT, will also be maintained for a while

#### Full list of RCT selection flags

```
// RCT selection flags
enum RCTSelectionFlags {
  kCPVBad = 0.
  kEMCBad.
  kEMCLimAccMCRepr,
  kFDDBad.
  kFT0Bad,
  kFV0Bad.
  kHMPBad,
  kITSBad.
  kITSLimAccMCRepr,
  kMCHBad.
  kMCHLimAccMCRepr,
  kMFTBad,
  kMFTLimAccMCRepr,
  kMIDBad,
  kMIDLimAccMCRepr,
  kPHSBad,
  kTOFBad,
  kTOFLimAccMCRepr,
  kTPCBadTracking,
  kTPCBadPID,
  kTPCLimAccMCRepr,
  kTRDBad.
  kZDCBad,
  kNRCTSelectionFlags
};
```

 The list of flags is available in Common/CCDB/RCTSelectionFlags.h

#### Typical use cases:

- Collisions selection:
  - Copy full mask (e.g. for filtering): uint32\_t rct = collision.rct\_raw();
  - Access single bits: bool isTOFBad = collision.rct\_bit(kTOFBad);
  - Use helper function: see next slides
- BunchCrossing selection:
  - Copy full mask (e.g. for filtering): uint32\_t rct = bc.rct\_raw();
  - Access single bits: bool isTOFBad = bc.rct\_bit(kTOFBad);

- Helper code and classes to interpret the RCT quality bits and select collisions/BCs
  - Enum to provide definition of RCT bits as set in the dynamic tables
  - RCTFlagsChecker Helper class to check a given subset of bits in the RCT columns
  - See Common/CCDB/RCTSelectionFlags.h
- The checker class can be initialized in two ways:
  - 1. With a pre-defined bits selection, identified with a label:

#### For example:

```
RCTFlagsChecker myChecker("CBT hadronPID");
```

Six labels, corresponding to the official Runlists, are currently implemented.

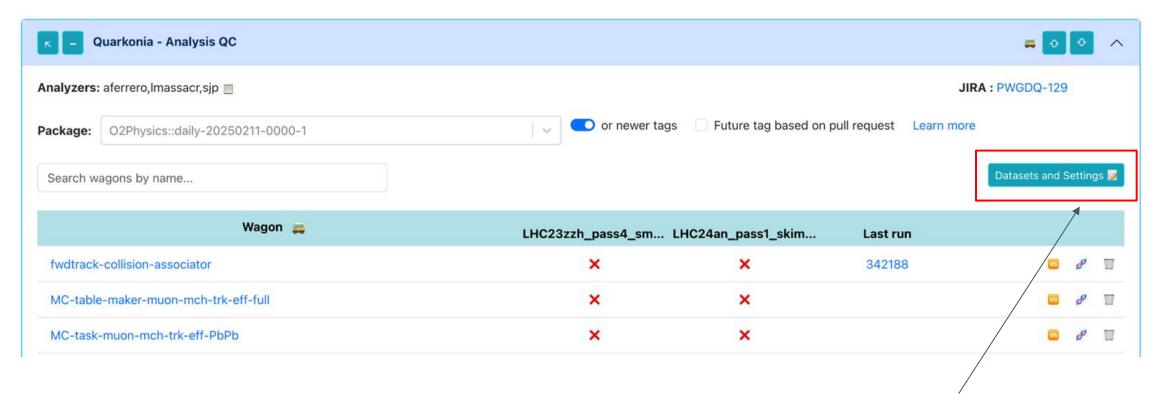
Setting checkZDC to true includes also ZDC flags in the bits selection (for Pb-Pb).

Setting the last parameter to true allows to reject all events where the detectors relevant for the specified Runlist are flagged as LimitedAcceptance

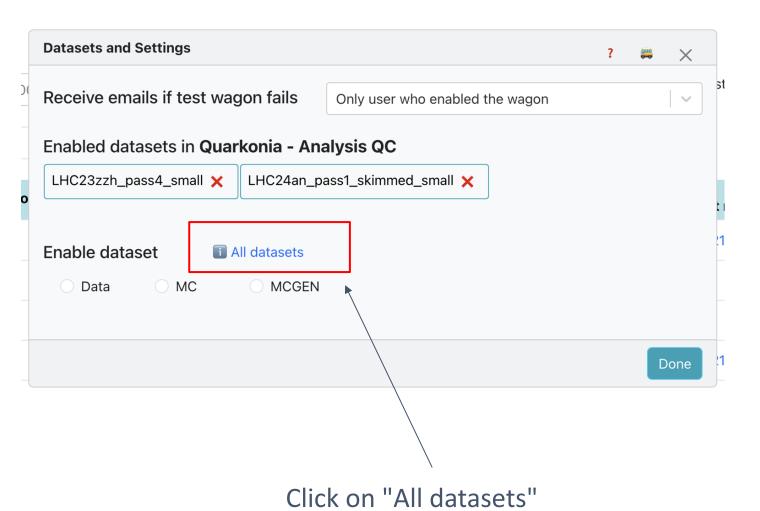
- Helper code and classes to interpret the RCT quality bits and select collisions/BCs
  - Enum to provide definition of RCT bits as set in the dynamic tables
  - RCTFlagsChecker Helper class to check a given subset of bits in the RCT columns
  - See Common/CCDB/RCTSelectionFlags.h
- The checker class can be initialized in two ways:
  - 2. With a custom list of bits, provided as a vector or an initializer list:

```
RCTFlagsChecker(std::initializer_list<QualitySelectionFlags> bitsToCheck)
RCTFlagsChecker(const std::vector<QualitySelectionFlags> bitsToCheck)
```

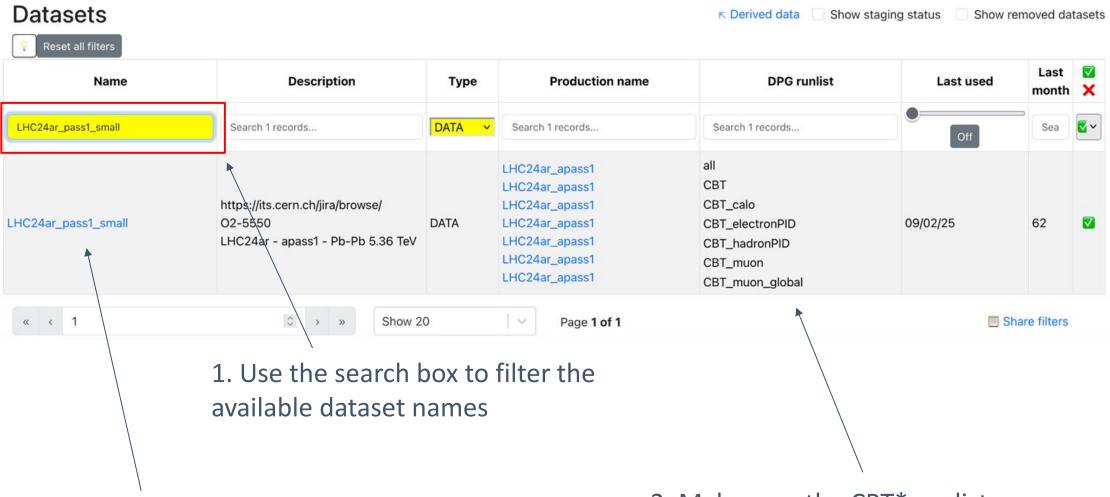
#### For example:


```
RCTFlagsChecker myChecker{kFT0Bad, kMFTBad};
```

- Helper code and classes to interpret the RCT quality bits and select collisions/BCs
  - Enum to provide definition of RCT bits as set in the dynamic tables
  - RCTFlagsChecker Helper class to check a given subset of bits in the RCT columns
  - See Common/CCDB/RCTSelectionFlags.h
- Collisions can then be checked easily:

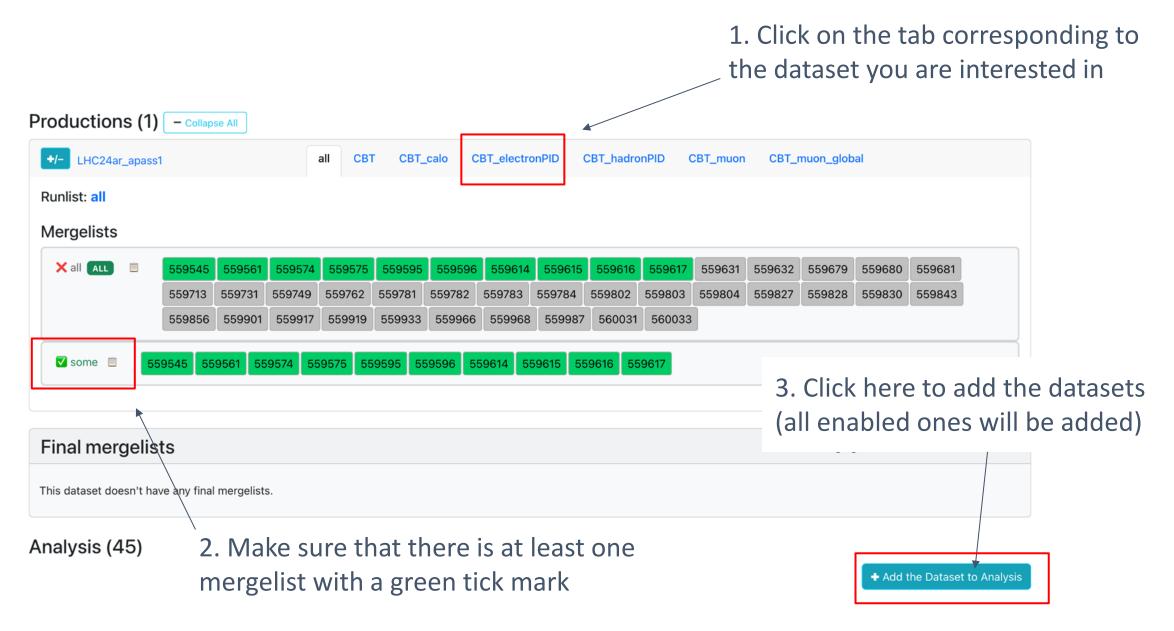

Putting all things together:

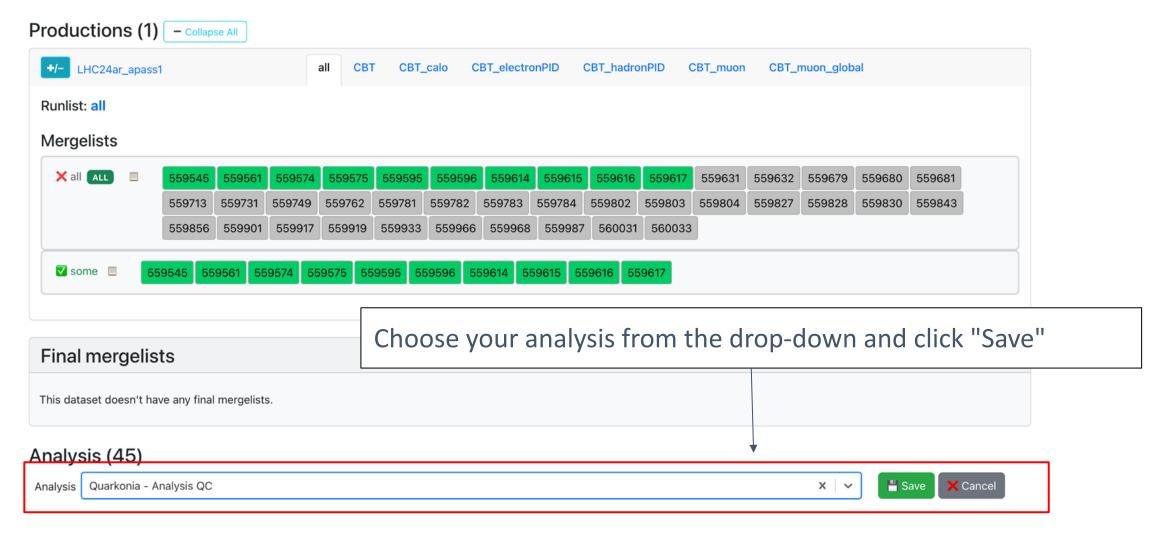
```
#include "Framework/runDataProcessing.h"
#include "Framework/AnalysisTask.h"
#include "Common/DataModel/EventSelection.h" 
RCTSelectionFlags.h is already included in EventSelection.h
using namespace 02;
using namespace o2::framework;
using namespace o2::aod::rctsel;
struct myExampleTask {
  // initialization with runlist label
  RCTFlagsChecker myChecker{ "CBT hadronPID" };
  void init(InitContext const&)
    // override initialization with the init() method
   myChecker.init("CBT hadronPID", true);
  void process(soa::Join<o2::aod::Collisions, o2::aod::EvSels>::iterator const& collision)
    // perform the check on the current collision
    if (myChecker(*collision)) {
      // process this collsion
```

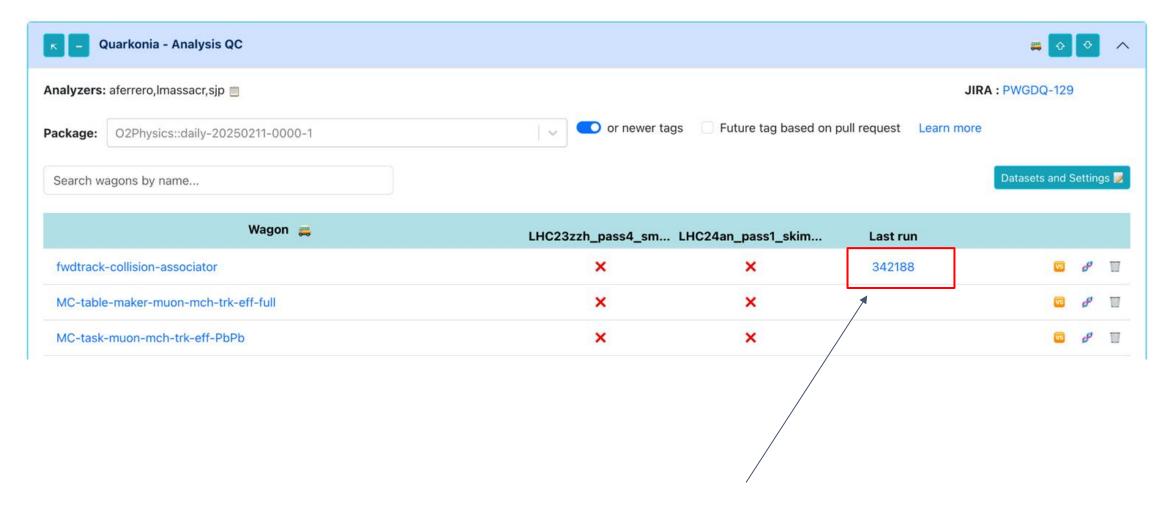

Open your analysis on HyperLoop (<a href="https://alimonitor.cern.ch/hyperloop/user">https://alimonitor.cern.ch/hyperloop/user</a>)



Click here to add a new Dataset



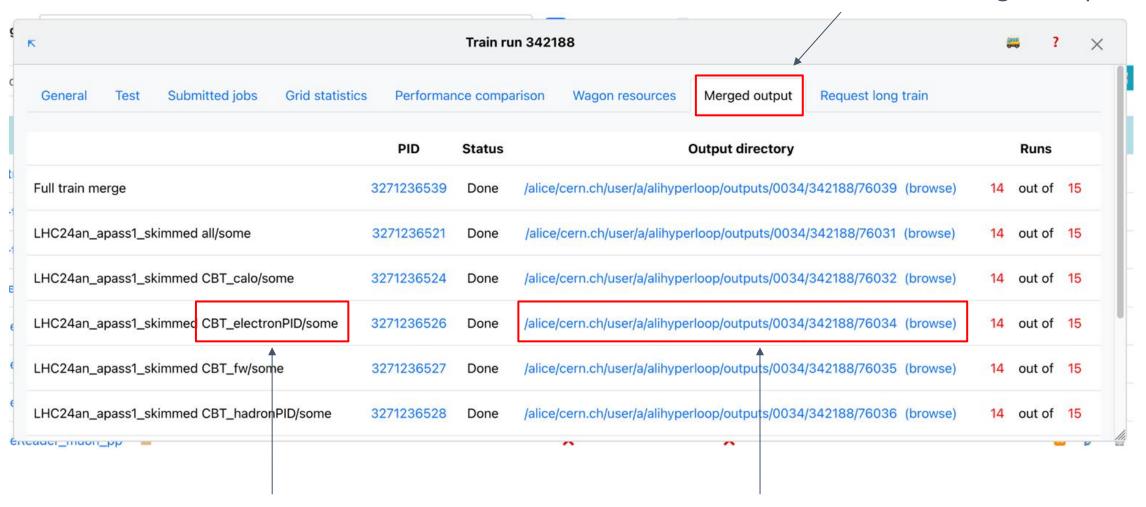


47




3. Click on the Dataset name

2. Make sure the CBT\* runlist you are interested in is listed here








Once completed, you can access the merged outputs bly clicking on the train run ID

The jobs will generate several merged outputs, one for each of the enabled Datasets

Click on the "Merged output" tab



The Dataset name corresponding to a given merged output is visible on the left

Here is the link to the corresponding MonaLisa repository

# Enjoy your analysis!!

08/11/2025 Jian Liu 53

# Backup