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100 years of spin: Stern-Gelach experiment

* The classical picture of a particle’s spin fails due to the problem of
exceeding speed of light.

+ Stern-Gerlach experiment (1922): first observation of two discrete
quantum states of sliver atom with u; in non-homogeneous B field

b ?\3 *
| NPV

Walter Gerlach & Otto Stern

Otto Stern, Nobel prize in Physics 1943
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100 years of spin: Anomalous Zeeman effect

+ Zeeman effect (1896), Anomalous Zeeman effect (1920s):
quantization of orbital angular momentum and spin.

Fine structure = (ev) doublet

H Atom = 1 X 100 Sodium

Hydrogen Atom Sodium Doublet (D Line)

Magnetic field off
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Normal Zeeman Effect | Anomalous Zeeman Effect |
)

Pieter Zeeman, Nobel prize in Physics 1903
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100 years of spin: Fourth quantum number

* Fourth quantum number by Wolfgang Pauli (1924): to explain
anomalous Zeeman effect, which takes only two values.

+ Concept of electron spin by Ralph Kronig (1925): can explain even
splitting of alkali spectra (over-estimated by factor 2), but opposed
by Pauli and Bohr, not published

Wolfgang Pauli, Ralph Kronig
Nobel prize in Physics 1945
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100 years of spin: Discovery of electron spin

* Electron spin by Uhlenbeck and Goudsmit (1925):

G.E. Uhlenbeck and S. Goudsmit,
Naturwissenschaften 13 (1925)
953.

A subsequent publication by the
same authors, Nature 117 (1926)
264.

George Uhlenbeck, Samuel Goudsmit
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100 years of spin: Dirac equation for relativistic particles

+ Pauli’s non-relativistic theory for electron spin (1927): Schroedinger
equation for particle with spin-1/2, Pauli spinor, Pauli matrices
(dimension 2)

H|y) = 1 [(P qA)’ - qho - B]+q¢’] Iw)—tﬁ—lw)

« Dirac equation (1928): relativistic extension of Pauli’s theory, Dirac
spinor, Dirac matrices (dimension 4)

¥ ﬁ A \ G Paul Dirac
: 2 el Nobel Prize
D P\/—\Q O N “ in physics

PHYSICIST ot hy
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100 years of spin: Dirac equation for relativistic particles

Dirac equation for spin-1/2 particle in a central potential V(r)~ — C/r

(a~P+3m+V)(E)=E($) P=—iV

E-V-m -o-P X ) =g x and v are Pauli spinors
—oc- P E—-V+m (3

Expressing i (small component) in terms of y (large component) in
non-relativistic approximation, we obtain spin-orbit coupling term Hg

. 1 .
ESX={V+(U'P)7(U~P)1X 1 L1 (. Es-V\_ 1 Es-V
) _E_'_—__V_:F_?_n_ ------------- T EVim 2m ! 2m T 2m 4m?
Effective P i Es —V 7 _
~|—+V—(o- . Es=E—
Hamiltonian |:2m +tV-(e-P) 4m? (- P x s " spin-orbit coupling is
el a2 4 " . L a relativistic effect
2B, P [(eP)x[PV] P [PV] __----7 and can be derived
2m 8m? dm? S dm?poe-mTT from Dirac equation !
(@ P)x[PV] _ _o-(rxP)TN, . , o
Hso.=—i ot = P AP, V] =[=iV,V] = —zCﬁ
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Energy in rotating frame

In the fixed inertial frame S, the frame S’ is rotating about a fixed axis
(e.g., the z-axis) S with a constant angular velocity w.

A particle with the mass m, with a position vector r’ and velocity v’ in
frame S, its absolute velocity v in frame S is

v=v +wxr (1)
The kinetic energy T of the particle in S is
1 1

Tzimv‘v:im(v'—kwxr’)-(v’—i—wxr')
_1 2 I / 1 72
=5mv> + mv (wxr)+2m(w><r) (2)
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Energy in rotating frame

The Lagrangianis L = T — V, and the generalized momentum is

, oL 0T

P—W—W—m(v'+wxr’):mv (3)

The Hamiltonian is

1 1
Hw:p’.vl—LZEmvlz—Em(wXr/)2—|—V

:% (p' — mw x r')2 - %m(w X r’)2+ %
:%p’2 —p(wxr)+V= %p’z +V-w-l (4)

where L' =r' x p'.
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Energy in magnetic field

In classical mechanics, the magnetic moment of a particle in an external
magnetic field can be derived as follows

(P—qA? P g 9
T = ———=——-—"p-A+—A
2m 2m mp + 2m
q q q
——p-A = —p- B)=——L-B=—u;-B
mp 2mp (rxB) 2m H
2 2
P LY
Hg = —+—A“4+V—u,-B 5
B 5 o ATV ()
Here we choose A = —%r x B (Coulomb gauge condition is satisfied

V - A =0) and orbital magnetic moment p; = 5L with L =r x p.
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Including spin

We can include the spin contribution to the interaction energy

1
Hw:%p2+V—(L+S)-w

p?

Hp =~—— 7A2 V- B
B =yt o ATV (et ps) (6)
where we have suppressed the prime symbol in the rotating frame, and

Its = g5=S is the spin magnetic moment.
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Spin in non-relativistic quantum theory

Spin in non-relativistic quantum theory
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Spin in non-relativistic thermal systems

In non-relativistic quantum-mechanics, the mean spin vector is defined as:
= <s> ~Tv (ﬁé) @)

where j is the density operator of the particle under consideration and § is
the spin operator. The polarization vector is defined as the mean value of
the spin operator normalized to the spin quantum number of the particle:

SHE

so that its maximal value is 1, that is |P| < 1.

Qun Wang (USTC/AUST) Spin in relativistic quantum theory Fudan ALICE School 14 /88



Spin in non-relativistic thermal systems

Consider a non-relativistic particle at equilibrium in a thermal bath at
temperature T in a rotating vessel at an angular velocity w, the density
operator is

1 Vs -
p=exp | =BA+ B+ fw- J+ fs - B (9)
where J= L+ 8, Q is a conserved charge with 1 being the corresponding
chemical potential, and B is a constant and uniform external magnetic field
with fig = 1gS/S being the magnetic moment.
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Spin in non-relativistic thermal systems

If the constant angular velocity w, as well as the constant magnetic field B
are parallel, the above density operator can be diagonalized in the basis of
eigenvectors of the spin operator component parallel to w, § - w, thereby
giving rise to a probability distribution for its different eigenvalues m. The
different probabilities read

o s (4 )

w (T, B,w](m) = Zisz exp [ﬂ <% —i—w) m}

(10)

The distribution Eq. (10) may now be used to estimate the spin vector in
Eq. (7).
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Spin in non-relativistic thermal systems

For the simpler case with B = 0, the spin vector along w is

S
> exp (ﬁwm)]

m=-—S

S _smexp(fwm) 9
@ =@ In

S =
S _sexp (Bwm) 3(fw)

=0 0 In {exp (—BwS) [1 + exp(Bw) + - - - + exp(2BwS)]}

I(Bw)
5 0 o e (—Bu 1 —exp[Bw(2S + 1)]
=5 5w) { P(=0w3) =1 ep() }

_5 0 I &P [—Bw(S +1/2)] — exp[Bw(S + 1/2)]
I(Bw) exp(—Bw/2) — exp(Buw/2)
. 0 | sinh [Bw(S + 1/2)]

TY90Bw) | sinh[Bw/2

where & is the unit vector along the direction of w.
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Spin in non-relativistic thermal systems

At the limit w < T or fw < 1, the spin vector in Eq. (11) becomes:
1
S :55(5 +1)Bw
1
P :§(5 +1)pw (12)

Then we obtain

1 1

S=P~ %ﬂw, (S=1)

3_ 5
§=_Pw~ fw (S=3/2) (13)
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Spin in relativistic quantum theory

e What is a microscopic particle? How to describe it (mass, spin,
charge, parity)?

@ Quantum + Special Relativity
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Particle tracks in bubble chamber
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Translation and Lorentz transformation

Let x* be the coordinates of a four-vector in frame F and x* is the
coordinates of a four-vector in frame F’, then the translation and Lorentz
transformation is expressed as

X" = N XY 4 gt (14)

which can be denoted as {a, A} with a* being a four vector and A a 4 x 4
matrix satisfying

8uNNG = 8po (15)
Note that the positions of two indices are sensitive in A/, they can be

lowered or raised by the metrix tensor g, or g#V. The distance is invariant
under Lorentz transformation

gudxtdx" = g, NN, dxPdx? = gpqdx?dx” (16)
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Lorentz transformation

We have following property for A%,

det (g NN, = (detA)? detg = detg
=det\ = +1 (17)

We can also derive from (15)
(gw//\u NV ) /\Ii oT _gpa/\n oT /\np
guNy (NGN7877) =guNpg™" = IV,

1
/\I/U/\Iﬁ,'/rga"r :gllli (18)
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Lorentz transformation

The inverse Lorentz transformation is derived as
g;w/\l;)/\yo =8po = glw/\,up/\uagp)\ = g(i\
1\
AV)\/\VU :ga)\ = (A 1) v /\Vo'
1
1A
(M), =N = guphNg™ (19)

or in another way
—-1\ 8
AN =gl = Ad (M)
i}
—1\ 8
(A 1)>\ :ABA (20)
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Lorentz transformation

The Lorentz transformation for x* reads
/
Xt = N XY (21)
The inverse transformation

(A1) X = (A1) N =

X = (A_l));tx’“ = X/N/\u)‘ (22)
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Poincare group (inhomogeneous Lorentz group)

The translation and Lorentz transformation (14) form Poincare group or
inhomogeneous group

X =NEXP 4 g1 = N (A xY + aP) + &

:A”foAp,,x” + A"foap + a# (23)
One can check that A*)\, satisfies (15)

gua (NNL) (NGA) = (8uaNN'G) (NUA)
=8po N\ = 8up (24)

! . .
So /\“p/\p,, is also a Lorentz transformation.
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Homogeneous Lorentz group

We can set a = 0, this gives the homogeneous Lorentz group
U(N,0)U(N,0) = U(NA,0) (25)
The inverse of the transformation (14) is

A= (N Nx? = (A1) (3 - )

= (A1) XK= (A (26)

which can be represented by U (/\_1, —/\_la). We can check it is really the
inverse of (14)

UN, a)U (N1 —=A"ta) =U (N1, —A"ta) U(A, a)
=U(1,0) (27)
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Poincare group (inhomogeneous group)

The transformation (23) can be represented as
UN,a)U(A,a) = UNNNa+ &) (28)

Form (17), we have detA = £1. The transformation with detA = +1 form
a subgroup of Lorentz group. From (15) we obtain for p =0 =0

(AY)? =1+ (Ng)* > 1 (29)
which lead to the inequalities for AY%:

NG >1, A%< -1 (30)
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Proper orthochronous Lorentz group

The conditions
detA = +1 and A% >1 (31)

define the proper orthochronous Lorentz group, a subgroup of Poincare
group.

It is impossible to jump from detA = +1 to detA = —1 or from A% > 1 to
A% < —1 by a continuous change of parameters. Any Lorentz
transformation that can be obtained from the identity by a continuous
change of parameters must have detA = +1 and A% > 1, the same sign as
the identity, and hence belong to the proper orthochronous Lorentz group.
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Proper orthochronous Lorentz group

Any Lorentz transformation is either proper and orthochronous, or may be

written as the product of an element of the proper orthochronous Lorentz

group with one of the discrete transformations & or 7 or #.7, where &
is the space inversion, whose non-zero elements are

@8:1, @11:@22:@33:—1 (32)
and 7 is the time-reversal matrix, whose non-zero elements are
=1, Fr=FR =7 =1 (33)

Thus the study of the whole Lorentz group reduces to the study of its
proper orthochronous subgroup, plus space inversion and time-reversal.
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Poincare algebra

Much of the information about any Lie symmetry group is contained in
properties of the group elements near the identity, For the inhomogeneous
Lorentz group, the identity is the transformation A/, = g%, a# = 0, so we
want to study those transformations with

N, =g+, d'=é (34)
where both w’, and €/ are taken infinitesimal. Eq. (15) becomes

8po =8uv (gl; + wlfo) (glzjr + w’i)’)
=8op + Wop + Wpo + O(wz)
—Wop T Woe =0, at O(w?) (35)

We have 10 independent components: w,, (6) and € (4).
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Poincare algebra

For an infinitesimal Lorentz transformation (34), we have
— 1, PO _ jc PP
U(l+w,e) = 1+§/wng —i€egPP + -+ (36)

Here J?? and P? are w- and e-independent operators, and the dots denote
terms of higher order in w and/or €. In order for U(1 4+ w, €) to be unitary,
the operators JP? and PP must be Hermitian

Ul +w,e) =U (1 +w,e)

!
Jrot =geo - pet = pr (37)

Since wy, is antisymmetric, we can take its coefficient J*7 to be
antisymmetric also

97 = —Jor (38)
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Poincare algebra

We now examine the Lorentz transformation properties of J?? and PP. We
consider the product

UN, a)U(1 4w, e)U(A, a) (39)
Here the inverse transformation is
Ut(Aa)=U (N1 A 1a) (40)
Inserting (36) into (39) we obtain
U(A, a)U(1 + w, e)U™L(A, a)

1
N1+ Si U(N, 2) 77 TN ) — i, U(A, 2)PPUT (M) (41)
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Poincare algebra

On the other hand, we can work out three transformation by the rule (28)

UA, a)U(1 4w, e)U(A, a)
=U(M1+w),Ae+a) U (A1 —A"1a)
=U (M1 + )AL AL +w)Aa+ Ae + a)
=U (14 AwA ™ Ae — Awh1a)

1

R+ Si(AN )0 I — i (e = AwAta) PP (42)

N |

To first order in w and ¢, equating coefficients of w,, and €, on both sides
of Egs. (41) and (42), we obtain

U(A, a)JP° U7L(A, a) =ALAZ (J* + Pra” — PYa")
U(NA, a)Ppu—l(/M a) =\/P* (43)
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Poincare algebra

In (43), we can also express
NoPH = (A" P
NN IR = (/\*1)"“ (N7 (44)
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Poincare algebra

In (43) we consider infinitesimal transformation A/, = g/, +w", and a* = €*
and keep only terms of first order in w/, and €, Eq. (43) now becomes

1
i [2wWJ’“’ — €, P, JPU] ——wa’w +w, S — P 4+ €7 PP
1
i [zw#,,JW — €, P, Pp] :w/fP“ (45)

Equating coefficients of w,,, and €, on both sides of these equations, we
find the commutation rules for the Lie algebra of Poincare group (or
Poincare algebra)

[P¥, PY] =0
[PM’JV)\] - <g)\uP1/ _guuP)\)
[JH, JP7) = — i (ghP IV + gVT P — g JrP — gPP Jie) (46)
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Homework 1: Poincare algebra

Apply infinitesimal transformation A/, = g/, + ', and a# = € in (43), try
to prove (45).
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Homework 2: Poincare algebra

The differential operator forms for J*¥ and P* are

Pt =idt = (i0, —iV)
I =xtPY — xVPH = | (x*” — x"OM) (47)

With the commutation rule [x*, P¥] = —ig" and [x,, P,] = —igy., we can
prove the Poincare algebra (46).
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Lorentz boost and rotation

We can define two groups of algebra
J =(Js1, Jo3, h2) = (1, S, J?)
K =(J%, J% %) = —(Jo1, Jo2, Jo3) (48)

which corresponds to rotation (J) and Lorentz boost (K). According to
(46), they satisfy
[Vis Jj] =€tk
[Ji, Ki] =iejKi
[Ki, Kj] = — i€ijcdi (49)
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Rotation and Lorentz boost

We can define two sets of operators
1 .
A,‘ :E(JI + IK,')
1
B; =3 (J; — iKi) (50)
They satisfy

[A,‘,Aj] :ifijkAk
[B;, Bj] :ifijkBk
[Ai, Bj] =0 (51)
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Homework 3: rotation and Lorentz boost

Prove Egs. (49) and (51) using Eq. (46).
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SL(2,C) group

e The SL(2,C) group is the special linear group of 2x2 complex
matrices with determinant 1. It is a 6-dimensional Lie group (since
2x2 complex matrices have 4 real parameters, and det=1 imposes one
constraint, leaving 6 real parameters). It serves as the universal cover
of the proper orthochronous Lorentz group SO* (1, 3).

@ The SL(2,C) group applies to spinor fields. It is crucial for formulating
relativistic quantum mechanics and quantum field theory for spin-1/2
particles, as it correctly describes how their spin states transform
under Lorentz boosts and rotations.
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SL(2,C) group

The group elements are written as
U(N) =e—0—iKn _ o=iA0s—iB05
1 : 1 ,
=exp {—/2(J +iK)- 04— IE(J —iK) - BB]
1 1

where
0p,=0—-in, 0g=0+in (53)
One can verify UT(A) = U7(A), i.e. U(A) is unitary.
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SL(2,C) group

For the irreducible (S,0) and (0, S) representations (S is the particle’s spin
quantum number), we have

DISI(A) =e04 = exp[(~i8 — ) - A
D) =e~7B%% — exp[(—if +n) - B] (54)
They are related to each other
DO (A1) = D (n) (55)

Note that D()(A) and D)T(A~1) are two inequivalent finite-dimensional
non-unitary representations of the Lorentz group and correspond to those
labeled as (S,0) and (0, S) respectively.
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Pauli-Lubanski pseudo-vector

As usual we shall look for a maximal set of commuting observables. The
four energy-momentum operators P* commute. Let p* be an “eigenvalue’
of PH. Let us now look for Lorentz transformations which leave p*
invariant, and write

U(A) = exp (;wwjﬂ”> (56)

where JH are 4x4 matrices as a particular representation for the
generators J*

(" )as = —i (lieh — ghe) (57)

One can check that the above satisfies the commutation rules in (46)
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Pauli-Lubanski pseudo-vector

The invariance of p implies w,,,,p” which is solved according to

W = €upeS’ P’ where €, is the totally antisymmetric tensor

0123 = —€923 = —1, and s* a four-vector whose component along p* is
irrelevant. One can check

Wy (jlw)ag p/B = —iWuy (ggpy - ggpu) =0 (58)

Thus the Lorentz transformations which leave p* invariant are represented
as

UNGY) = 9 (e 575 (59)
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Pauli-Lubanski pseudo-vector

Here we defined Pauli-Lubanski pseudo-vector
1 uv po 1 o juv
W, = _EEPWUJ P = _EGP“VUP J (60)

Due to €y [P7, J#] = 0 from (46), the position of two operators J*
and P? does not matter. We have the identity

W(P)-P =0 (61)
One easily finds from (46)

[Wu, Pl,] =0, [Wﬂ, W,,] = —I'em,ngpPU
[Jw/’ Wp] =i (gl/p WM — 8up WV) (62)

The latter indicating that W, behaves as a four-vector under Lorentz
transformations.
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Pauli-Lubanski pseudo-vector

Let then |p, o) be a vector of representation space such that
P#|p,o) = p*, so we have

U(A(p)) Ip, o) = exp (—iW,s”) p, o) (63)
It can be shown that
P! exp (—iW,s”) |p, o) =exp (—iW,s”) P |p,o)
=p" exp (—iW,s”) |p, o) (64)
because [W,,, P,] = 0.
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Pauli-Lubanski pseudo-vector

From these commutation rules one observes that P,P* = P2 and
W, WH = W?2 connnute with all P#* and J*, so P2 = m? and W? are two
commutable invariant operators. The proof is simple

[, 877 W Wo| =ig™ (gup Wy — 8upWo) Wo + i W, (o0 Wy — 8o Wi)
=i (W, W, — W,W,) + i (W,W, — W,W,) =0
[JuwngPpPU] :igpa (gI/pP,u - g,upPZ/) Pa + ingWp (gl/aP,u - g,uUPI/)
=i (P,P, — P,P,)+i(P,P,— P,P,)=0 (65)

So P? = m? and W?/m? = S(S + 1) (spin quantum number) can be
regarded as two intrinsic constants to characterize a particle.
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Pauli-Lubanski pseudo-vector

One can attach to each p three space-like vectors n()#(p) (i = 1,2,3)

(p) nV(p) =
(p) =0
gijn () (P) =8uv
Euypanga)n£ﬁ)ngw)naa) _ cabyd (66)

where we assume n(9#(p) = p"/m. We can expand W*(p) as

3

WH(p) = 3 Wilp)n ¥ (p) (67)

i=1
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Here we can extract W;(p) as

Wi(p) = — W(p) - ' (p)
1 .
:Eew/pcrﬂwpan(l)p(p) (68)

So one can define three spin operators

1 1

Si(p) = —Wi(p) = 5 —unpr "0 (p) (69)

One can verify the commutators

[Si(p), Si(P)] = ieijkSk(p) (70)
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Here S;(p) are generators of SU(2) subgroup of proper orthochronous
Lorentz group which leaves p invariant. Thus we have

3

3
S S p) = 5 > WAp) = W) ()
i=1

i=1

which has possible eigenvalues S(S + 1) with S being integer or
half-integer. So P2 = m? and 52 = S(S + 1) can characterize a particle.

Qun Wang (USTC/AUST) Spin in relativistic quantum theory Fudan ALICE School 51/88



One particle spin-momentum state

A particle is defined as a spin-momentum quantum state in its rest frame

|m, o) (72)

where o is the spin quantum number along the spin quantization direction
(magnetic quantum number)

0=-5,-S+1,-5S+2,---,5-1,5 (73)

Here S is the spin quantum number which is defined through

,0) =0 |m, o) (74)

where we choose the z-axis as the spin quantization direction.
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One particle spin-momentum state

Here m is the particle’'s mass defined through

P¥|m,o) =p"|m,o) = (m,0)|m,0)

P2|m, o) =p?|m, ) = m? |m, o)

where p# = (m,0) is the four-momentum of the particle at rest.
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One particle spin-momentum state

When the particle is not at rest but has an on-shell four-momentum
p" = (Ep, p), its spin-momemtum state can be represented by U (L(p)) as

p,o) = |p,o) = U(L(p)) |m, o) (75)

where L(p) = L, (p) denotes the Lorentz transformation that transforms a
particle at rest to p* = (Ep, p),

E, 1 :
LO _ —P LO_ = —p; L= = ;
0 m7 i mp ) 0 mp

: B,
L'; = bij — pipj + EpPin (76)

The state is normalized as

(P, 0'|p, o) = 2E,(27)*6) (p' = p) 6rc (77)
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Lorentz transformation of one particle state

The Lorentz transformation of a spin-momentum state is

UN)|p,o) = UMN)U(L(p ))|ma0>
= ( ( p)) U (L™ (Ap) AL(p)) |m, 0’>
(L(Ap)) |m, 0><mU\U( L (Ap) AL(p)) [m, o)

z Ap,o”) (m,o’| U [L™! (Ap) AL(p)] |m, o)
— S, |Ap, o’y D) [L7 (Ap) AL(p)] (78)

where we defined D-matrix element for the Wigner rotation R
D)(R) = (m,o’| UR) |m,0), R=L"Y(Ap)AL(p)  (79)

The representation of the little group (Wigner rotation) must be unitary, so
we have

DO (R) = DO)Y(R) = DO)(RTY) (80)
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Lorentz transformation of one particle state

The creation and annihilation operators transform as
U ah Ut (A) = al,,.DS) [L7Y (Ap) AL(p)] (81)
UN apo U () = DS [LHPA'L(AR)] anpr (82)
The first equality follows Eq. (78) as
U(N)|p,o) =U(N)ah, U (A)U(A) [0)
U(N)a} .U~ (N)[0)
=al,, ., 10) D) [L7 (Ap) AL(p)] (83)

where we used U(A)|0) = |0) and repetition of indices means summation.

~—
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Homework 4: Lorentz transformation of one particle state

Try to derive (82) by taking Hermitian conjugate of (81), using the
property that U (A) is unitary.
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Charge conjugate form

For a rotation, we have the relation
DO*(R) = cDOI(R)C! (84)
where C is a (25 + 1) x (25 + 1) unitary matrix satisfying

Ct=cT=c1=(-1*C
C* =(-1)*>°1
C=C-1)» (85)

The explicit form of Eq. (84) can be written as

o0

pIR) = D@ (R
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Charge conjugate form

By (86) we can rewrite Egs. (81,82) as

U(A)ab, U™t (A) = (CD(S) (L= (p)A"2L (Ap)] C—l) al
U(N) 250U (N) =anpr (€D L2 (AD)AL(P) €71)  (87)

We can use above equation to define the transformation of the anti-particle
operator b' as

U () b}, U (N) = (CDO [L A L(AR)] €7) Bl

U(A) bpo U™ (N) =bpp o (CD(S) (LY (Ap) AL(p)] C—l) (88)

oo
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Lorentz transformation of quantum fields

We use the symbols

ap.oc =Dyor (L(P)) ap.or
Boo =[D(L(p) €], b,
Tpo =D (L7H(p)) 3p.or
Boo = DO (L R)) €] BL, (89)
We can verify
U(N)O(p, ) U (A) = Dyor (A1) O(Ap, ') (90)

where O(P, 0') = CQpo, 5p,0'a Qpg, ﬁp,o'
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Homework 5: Lorentz transformation of quantum fields

Prove Eq. (90).
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Lorentz transformation of quantum fields

So we can construct the field with ap 5, Bp.o, Cp.o, Bp.o

’(/) (X) o d3p e—ipx +B eipx
V= | (en)R2E, P po

3
JO'(X) :/dpa Ue_iPX+B eipx (91)
(2m)32E, * P

By (90) we can prove

U (N) o (x)U™T (A) =DE) (A1) ¥r (Ax)
U (A) ho(x) U1 (A) =D (A1) - (Ax) (92)
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Lorentz transformation of quantum fields

The (anti-) commutation relations of creation and annihilation operators in
(91) are related to the normalization of the states (77) and read

ane ], = [toreth ],
=2E,(21)*6) (p — p') 6,1 (93)

The 2(2S + 1) field degrees of freedom in (91) are needed to represent
particles and antiparticles. We have

Ur(x) = Crob5t(x) (94)

where ¥5(x) is the charge-conjugated field, which is obtained from v, (x)
by swapping a <+ b and af < bf in (91).
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Homework 6: Lorentz transformation of quantum fields

Prove Eq. (94).
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Quantum fields for spin-S particles

We can define a 2(25 + 1)-component field

V(x) = / (27:’;257 [U(p) ape” PX 4V (p) bj,eiplx]

3 . R .
EOR (2:)3’;% U () e + 5,V (p)e Y] (95)

where a, and b}L, are (25 + 1)-dimensional column vectors of the
annihilation and creation operators., and 2(2S + 1)-component spinors

D) (L(p))C?
o)~ ofor ()))) ) 0= gion (o )
U(p) =U'(p)lo = [D® (L71(p)) , DO (L(p))]
V(p) =V'(p)o = € 1D<5> “(p) . DN (L(p))] (9%)
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Quantum fields for spin-S particles

Here Iy is the 2(25 + 1) x 2(2S + 1) matrix

ro_(‘l) é) (97)

Here are some properties of spinors
(5)
UEU) = [0 (6. 09 we)] (e (8D ) =2

Vo) = [c100 e o won] (o WS

= 202 =2(-1)*
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Quantum fields for spin-S particles

_ (5)
ue)0e) = (o (B0 ) (P () . 0 (o)

B / D) [L(p)Li(p)]
- < D& [(L(p)Li(p)) ] / )

_ (—1)*1 DB) [L(p)LT(p)]
V(”)V"’):<D<S) (wrE) ] v ) (%)

The spin-momentum states can be extracted as
p.) = 3 10) = Es [ dx(x)Unn(p)e P 0)

(pol = (Olans = £ (0] [ dxTUnr(p)Ur(x)P™ (100
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Density operator

The density operator in a rotation frame is defined as

p = %exp {ﬂ(—ﬁ—l—u@—i—w-gﬂ Py (101)

where Py is the projection operator onto the localized states |hy), where
V' means the field exsits in the volume V' and vanishes out of the volume.
The one-particle matrix elements of the density operator are

fra(p) ~ <p,7 ‘exp [ﬁ (—Fl +puQ+uw- J)] Pv‘ p,a>
= e PEtPua < exp (Bw . f) PV’ P, a>

= e B (p 2 R, (9) Py|pio)

d3p/ R
_ —ﬁEp-l—ﬁwII/ R ;o
€ P, T | Ry (gb)‘ p,0
(27T)32Ep/ < >

x(p',o'| Pv|p,0) (102)

p,T
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Density operator

Here R, (¢) is the rotation around w of an angle ¢ = ifw. Inserting a
compact basis into the R and Py, we have

<P77' ‘R\)w(gb)

r, 0'>

<D L7 (Rop) Rol ()] (103)

Here the D() is the representation of SL(2,C) with spin S.
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Matrix elements of density operators

For the matrix element of Py we have

<p/>al{ PV ’p70-> = Z <p/70-,‘ hV> <hV |p70>
hy

= EpEpl / dX1dX2 <0| Ua’nwﬁ (Xl) eip/'X1 |hv>
X <hV| W‘1'2 (XZ) UTgae_ip.Xz |O>
= EpEy / dxidxae® e P2, (p) Upyo(p)

x Y (01 Wn (x1) [hv) (hy| Wy (x2) [0)

hy

= EpEP’/dxldXze"’Dl'Xle_"p'x2 (0[hv) (hv|0)

XUU’Tl (,D/) Ur,o(P) Z Vv (XI)WV,Tz (x2) (104)
hy
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Matrix elements of density operators

Here |hy) is the eignstate of W(x) with the eignvalue Wy inside the
volume V
0 vV
Vy(x) = x¢ (105)
V(x) xeV
We make an ansatz
Yy Yy 5
Wor, (x+ 2. %) =3 Vv () Wy () (O1h) (10
4

=87y W (x + %, X — %) (106)

where we used x; 2 = x £ y/2.
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Matrix elements of density operators

Then we obtain

tut = [ dradrae <P AW, (x4 L x - Y)

— —i(p=p')x 4i(p+p')y/2 y .Y
57172/dxdye e w (X+ 50X 2)
=0nnW (p—p',p+p) (107)

With above relation, Eq. (104) becomes

(p.o' |Pv|p,o) = E,EyW (p—p/,p+p) [U(p) Ulp)],, (108)
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Matrix elements of density operators

We put (103) and (104) into ()
fro(p) ~ <p, T ‘exp [ﬂ (—fv +pg+w- J)} Py

d3p/
— e BEr+Buq <
¢ /(277)325,,, P T

:EgeBEP+5“q/d3p’5(3) (p — R’wp’) Dg? [Lfl (R’wp’) R.L (p')]
x W (p—p,p+p)
x | DO (L1 () L(p) + D (LAp)L (p))]
~Eze BN (p— R;1p,p+ RSp)

x { D) (L (PIRL(p)| + D) |LH(p)RLTH ()] |

o)

Ro(0)| P’} (s’ Py lp,o)

oo
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Spin distribution

So the distribution can be defined as

1
fTU(p) - Ee PEp+Buq

x{ D [L 7 p)RuL(p)] + D) [LH(PIRLT(p)] J(100)
Taking the trace of the density matrix,
f(p) = e 754918 Ty [DO) (ifw)] = e PBFPHax (Bw)  (110)

where
_ sinh [Bw (S + 3)]
B sinh (%ﬂw)

X (Bw) = Tr [D©) (ipw)| (111)
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Wigner functions

Wigner functions for spin-1/2 particles

Wags (x, k) = — (23r)4 /d4yeiky <\Ua <x + %) Vg (x — X)>
1

(112)
where

frs (x,p) = 2(2:;)3/d4u6(u-p)e"“’x <aT >

pfu/2,saP+U/2:”

3 1 —iu-x
fsr (X7 P) = m / d4U(5(U . p) e <b;r,_u/2,rap+u/2,s> (113)
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Wigner functions

So the expectation value of any 4 x 4 matrix O can be obtained by
(vov) = / d*kTr (OW (x, k))

3

- / (2:)3’;53 {Tr[Ou, (p) fis (x, p) Ts (p)]
—Tr |:OVr (P) ?;’s- (X7 P) Vs (P):| }

_ PP ()0 f,

= /(271’)32Ep [us (P) ur (P) rs (X, P)

7 () Ov, (p) 1z (x, )] (114)
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Wigner functions

The 4 x 4 matrix O corresponding to the current vector, the
energy-momentum and spin tensor are

T
TR = AR
27
o= A
1
s = S{y Ty (115)

Note that the energy-momentum and spin tensor are all canonical.
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Spin distribution functions

According to (109), we have

fio =e P [ D) (17 () RuL (p))

00 (LR (1 0) ) ] (116)

where £ = g/ T. The trace of this distribution corresponding to the
particle density is

Tref =3 fis = e*ﬁ'p*ﬁ“qTrs[ D(S) (ﬁew> } (117)
S
We apply it to spin-1/2 particles as

f= e_ﬁ'p’%iv(p) exp (;szz> U (p) (118)
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Spin distribution functions

Here U(p) is a 4x2 matrix

- S ) o
it has a additional factor v/m compared with Eq. (96), and we assume
DU/ (i) = exp (;ﬁws> (120)
and
Y, = ( ‘33 (?3 > (121)
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Spin distribution functions

We can define
W = Pw (6,075 — 520,) (122)

So Eq. (118) can be rewritten as

P 1 .,
fo=e ’BP’L’EEU(p)eXp <2wuy2" > U(p)

-]

= —e_’B'p"'E% [V(p)exp (;wWZ‘“’> V(p)]T (123)
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Spin distribution functions

We can make an ansatz that distribution can be expressed as

f = S U(R)X()U(p)
F= s VXV (124)
and X (p) and X (p) in global equalibrium state are
X(p) = [eXp <ﬁ p—&— ;w,wi“”> + l] B
X(p) = [exp <6 p+E+ ;wa’”’> + /] - (125)
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We can construct spin tensors

A, puv 1%
(v54) =L [ 2 000 .2} 009 719)
- v 7T
[V (p) {fy bV ()T (x,p)]
d3p VAL aYN% Aouv
VA v ARHY
+p"0" + pfO" + ptO )
where the tensor ©4¥ and ©" are defined as

oM = tr[Z*X(p)]
0" = - [¥"X(p)] (126)
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The tensor ©* can be written as in form of derivative of w"¥

-1
O =Tr {Z‘“’ [exp (ﬁ p—&— ;wWZ’“’> + I] }

= 1
= ZTr [Z’“’(—l)’”rl exp (—nﬂ -p+né+ 2nwWZ’“’>]

X 1yn+1
:23§W 2 (=1) exp(—np-p+n&)Tr [exp (;nwwzm’ﬂ
=2 0 Triln(/+ -5 _i_g_i_lf S
. exp p W
~nf (1 — np)wh” (127)
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The Pauli-Lubanski vector is defined as

1
Su = —5mCupor P (128)

where JP? are generators of Poincare algebra corresponding to Lorentz
boost and rotation and are given by

3dT%7 (x, p)

JP7 = (2r) o (129)
The total angular momentum operator is defined as
TN (x,p) = xPTA —x7TY 48 (130)
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The stress tensor and density are defined as

TH = _4p Y (trof + trof)
- (271—)32Epp p r2 r2

d3

SV — / 7(%)32 5 (p”@“‘ + pHeN + promr
p

+pro™ 4 peY 4 p@’“’) (131)
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For the particle, we have
1 _
SOpo — > [(pra — x7pP)traf + (xPp? — x7pP) trzf]
4 (pcr@0p + pp@00 + p0@pcr
2E,
+ p70% 4 pre% 4 pe” 0)
{ ﬁuparso’pg
1 _
= > (eﬂ” + e””) (132)
the terms proportional to p” or p? vanish for the

€uporPT P’ = €uporp” p° = 0. The average polarization defined in Eq.(128)
can be simplified to

1 - P
<5M(p)> = _4tr2f6upa7'ep E (133)
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Spin vector on hyper-surface

The momentum spectra can be obtained by integration over a volume V
on freezeout hyper-surface

1, d3xe »r©OP7 B
S - _= |4 Hp m
(o) = LT

A
7}fav dX) e €upor©7 B
Joy dZaBotraf
1 pT [y dEAP 0P

e P JovTTAF &
41T m o, dE\pMrof

L foy @Rt (L np) @
8 HpoT m fav dZ)\p)‘nF

12

(134)
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Spin vector on hyper-surface

Here the hypersurface dX, = d3xf#, the £, is the normal vector of the
hypersurface. The polarization for anti-particles can be obtained by
replacing f and ©"” by f and ©"" respectively.
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