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100 years of spin: Stern-Gelach experiment
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100 years of spin: Anomalous Zeeman effect
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100 years of spin: Fourth quantum number
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100 years of spin: Discovery of electron spin
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100 years of spin: Dirac equation for relativistic particles
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100 years of spin: Dirac equation for relativistic particles
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Energy in rotating frame

In the fixed inertial frame S , the frame S ′ is rotating about a fixed axis
(e.g., the z-axis) S with a constant angular velocity ω.
A particle with the mass m, with a position vector r ′ and velocity v ′ in
frame S ′, its absolute velocity v in frame S is

v = v ′ + ω × r ′ (1)

The kinetic energy T of the particle in S is

T =
1
2
mv · v =

1
2
m
(
v ′ + ω × r ′

)
·
(
v ′ + ω × r ′

)
=

1
2
mv ′2 +mv ′ ·

(
ω × r ′

)
+

1
2
m
(
ω × r ′

)2 (2)
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Energy in rotating frame

The Lagrangian is L = T − V , and the generalized momentum is

p′ =
∂L

∂v ′ =
∂T

∂v ′ = m
(
v ′ + ω × r ′

)
= mv (3)

The Hamiltonian is

Hω =p′ · v ′ − L =
1
2
mv ′2 − 1

2
m
(
ω × r ′

)2
+ V

=
1

2m
(
p′ −mω × r ′

)2 − 1
2
m
(
ω × r ′

)2
+ V

=
1

2m
p′2 − p′ ·

(
ω × r ′

)
+ V =

1
2m

p′2 + V−ω · L′ (4)

where L′ = r ′ × p′.
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Energy in magnetic field

In classical mechanics, the magnetic moment of a particle in an external
magnetic field can be derived as follows

T =
(p − qA)2

2m
=

p2

2m
− q

m
p · A +

q2

2m
A2

− q

m
p · A =

q

2m
p · (r × B) = − q

2m
L · B = −µL · B

HB =
p2

2m
+

q2

2m
A2 + V−µL · B (5)

Here we choose A = −1
2r × B (Coulomb gauge condition is satisfied

∇ · A = 0) and orbital magnetic moment µL = q
2mL with L = r × p.
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Including spin

We can include the spin contribution to the interaction energy

Hω =
1

2m
p2 + V− (L + S) · ω

HB =
p2

2m
+

q2

2m
A2 + V− (µL + µS) · B (6)

where we have suppressed the prime symbol in the rotating frame, and
µS = g q

2mS is the spin magnetic moment.

Qun Wang (USTC/AUST) Spin in relativistic quantum theory Fudan ALICE School 12 / 88



Spin in non-relativistic quantum theory

Spin in non-relativistic quantum theory
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Spin in non-relativistic thermal systems

In non-relativistic quantum-mechanics, the mean spin vector is defined as:

S =
〈
Ŝ
〉
= Tr

(
ρ̂Ŝ
)

(7)

where ρ̂ is the density operator of the particle under consideration and Ŝ is
the spin operator. The polarization vector is defined as the mean value of
the spin operator normalized to the spin quantum number of the particle:

P =
1
S

〈
Ŝ
〉

(8)

so that its maximal value is 1, that is |P| ≤ 1.
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Spin in non-relativistic thermal systems

Consider a non-relativistic particle at equilibrium in a thermal bath at
temperature T in a rotating vessel at an angular velocity ω, the density
operator is

ρ̂ =
1
Z

exp
[
−βĤ + βµQ̂ + βω · Ĵ + βµ̂B · B

]
(9)

where Ĵ = L̂ + Ŝ , Q̂ is a conserved charge with µ being the corresponding
chemical potential, and B is a constant and uniform external magnetic field
with µ̂B = µB Ŝ/S being the magnetic moment.
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Spin in non-relativistic thermal systems

If the constant angular velocity ω, as well as the constant magnetic field B
are parallel, the above density operator can be diagonalized in the basis of
eigenvectors of the spin operator component parallel to ω, Ŝ · ω, thereby
giving rise to a probability distribution for its different eigenvalues m. The
different probabilities read

w [T ,B, ω] (m) =
exp

[
β
(
µBB
S + ω

)
m
]

∑S
m=−S exp

[
β
(
µBB
S + ω

)
m
] (10)

The distribution Eq. (10) may now be used to estimate the spin vector in
Eq. (7).
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Spin in non-relativistic thermal systems

For the simpler case with B = 0, the spin vector along ω is

S =ω̂

∑S
m=−S m exp (βωm)∑S
m=−S exp (βωm)

= ω̂
∂

∂(βω)
ln

[
S∑

m=−S

exp (βωm)

]

=ω̂
∂

∂(βω)
ln {exp (−βωS) [1 + exp(βω) + · · ·+ exp(2βωS)]}

=ω̂
∂

∂(βω)
ln

{
exp (−βωS) 1− exp [βω(2S + 1)]

1− exp(βω)

}
=ω̂

∂

∂(βω)
ln

exp [−βω(S + 1/2)]− exp [βω(S + 1/2)]
exp(−βω/2)− exp(βω/2)

=ω̂
∂

∂(βω)
ln

sinh [βω(S + 1/2)]
sinh[βω/2]

(11)

where ω̂ is the unit vector along the direction of ω.
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Spin in non-relativistic thermal systems

At the limit ω ≪ T or βω ≪ 1, the spin vector in Eq. (11) becomes:

S =
1
3
S(S + 1)βω

P =
1
3
(S + 1)βω (12)

Then we obtain

S =
1
2
P ≈ 1

4
βω, (S = 1/2)

S =P ≈ 2
3
βω, (S = 1)

S =
3
2
P ≈ 5

4
βω, (S = 3/2) (13)
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Spin in relativistic quantum theory

What is a microscopic particle? How to describe it (mass, spin,
charge, parity)?
Quantum + Special Relativity
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Particle tracks in bubble chamber
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Translation and Lorentz transformation

Let xµ be the coordinates of a four-vector in frame F and x ′µ is the
coordinates of a four-vector in frame F ′, then the translation and Lorentz
transformation is expressed as

x ′µ = Λµ
νx

ν + aµ (14)

which can be denoted as {a,Λ} with aµ being a four vector and Λ a 4× 4
matrix satisfying

gµνΛ
µ
ρΛ

ν
σ = gρσ (15)

Note that the positions of two indices are sensitive in Λµ
ν , they can be

lowered or raised by the metrix tensor gµν or gµν . The distance is invariant
under Lorentz transformation

gµνdx
′µdx ′ν = gµνΛ

µ
ρΛ

ν
σdx

ρdxσ = gρσdx
ρdxσ (16)
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Lorentz transformation

We have following property for Λµ
ν

det
(
gµνΛ

µ
ρΛ

ν
σ

)
=(detΛ)2 detg = detg

⇒detΛ = ±1 (17)

We can also derive from (15)(
gµνΛ

µ
ρΛ

ν
σ

)
Λκ

τg
στ =gρσΛ

κ
τg

στ = Λκ
ρ

gµνΛ
µ
ρ (Λ

ν
σΛ

κ
τg

στ ) =gµνΛ
µ
ρg

νκ = Λκ
ρ

↓
Λν

σΛ
κ
τg

στ =gνκ (18)
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Lorentz transformation

The inverse Lorentz transformation is derived as

gµνΛ
µ
ρΛ

ν
σ =gρσ ⇒ gµνΛ

µ
ρΛ

ν
σg

ρλ = gλ
σ

Λ λ
ν Λ

ν
σ =gλ

σ =
(
Λ−1)λ

ν
Λν

σ

↓(
Λ−1)λ

ν
=Λ λ

ν = gνρΛ
ρ
αg

λα (19)

or in another way

Λ λ
α Λ

β
λ =gβ

α = Λ λ
α

(
Λ−1) β

λ

↓(
Λ−1) β

λ
=Λβ

λ (20)

Qun Wang (USTC/AUST) Spin in relativistic quantum theory Fudan ALICE School 23 / 88



Lorentz transformation

The Lorentz transformation for xµ reads

x ′µ = Λµ
νx

ν (21)

The inverse transformation(
Λ−1)λ

µ
x ′µ =

(
Λ−1)λ

µ
Λµ

νx
ν = xλ

↓

xλ =
(
Λ−1)λ

µ
x ′µ = x ′µΛ λ

µ (22)
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Poincare group (inhomogeneous Lorentz group)

The translation and Lorentz transformation (14) form Poincare group or
inhomogeneous group

x ′′µ =Λ′µ
ρx

′ρ + a′µ = Λ′µ
ρ (Λ

ρ
νx

ν + aρ) + a′µ

=Λ′µ
ρΛ

ρ
νx

ν + Λ′µ
ρa

ρ + a′µ (23)

One can check that Λ′µ
ρΛ

ρ
ν satisfies (15)

gµα
(
Λ′µ

ρΛ
ρ
ν

) (
Λ′α

σΛ
σ
β

)
=
(
gµαΛ

′µ
ρΛ

′α
σ

) (
Λρ

νΛ
σ
β

)
=gρσΛ

ρ
νΛ

σ
β = gνβ (24)

So Λ′µ
ρΛ

ρ
ν is also a Lorentz transformation.
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Homogeneous Lorentz group

We can set a = 0, this gives the homogeneous Lorentz group

U(Λ′, 0)U(Λ, 0) = U(Λ′Λ, 0) (25)

The inverse of the transformation (14) is

xλ =
(
Λ−1)λ

µ
Λµ

νx
ν =

(
Λ−1)λ

µ

(
x ′µ − aµ

)
=
(
Λ−1)λ

µ
x ′µ −

(
Λ−1)λ

µ
aµ (26)

which can be represented by U
(
Λ−1,−Λ−1a

)
. We can check it is really the

inverse of (14)

U(Λ, a)U
(
Λ−1,−Λ−1a

)
=U

(
Λ−1,−Λ−1a

)
U(Λ, a)

=U(1, 0) (27)
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Poincare group (inhomogeneous group)

The transformation (23) can be represented as

U(Λ′, a′)U(Λ, a) = U(Λ′Λ,Λ′a+ a′) (28)

Form (17), we have detΛ = ±1. The transformation with detΛ = +1 form
a subgroup of Lorentz group. From (15) we obtain for ρ = σ = 0(

Λ0
0
)2

= 1 +
(
Λi

0
)2
> 1 (29)

which lead to the inequalities for Λ0
0:

Λ0
0 > 1, Λ0

0 < −1 (30)
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Proper orthochronous Lorentz group

The conditions
detΛ = +1 and Λ0

0 > 1 (31)

define the proper orthochronous Lorentz group, a subgroup of Poincare
group.
It is impossible to jump from detΛ = +1 to detΛ = −1 or from Λ0

0 > 1 to
Λ0

0 < −1 by a continuous change of parameters. Any Lorentz
transformation that can be obtained from the identity by a continuous
change of parameters must have detΛ = +1 and Λ0

0 > 1, the same sign as
the identity, and hence belong to the proper orthochronous Lorentz group.
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Proper orthochronous Lorentz group

Any Lorentz transformation is either proper and orthochronous, or may be
written as the product of an element of the proper orthochronous Lorentz
group with one of the discrete transformations P or T or PT , where P
is the space inversion, whose non-zero elements are

P0
0 = 1, P1

1 = P2
2 = P3

3 = −1 (32)

and T is the time-reversal matrix, whose non-zero elements are

T 0
0 = −1, T 1

1 = T 2
2 = T 3

3 = 1 (33)

Thus the study of the whole Lorentz group reduces to the study of its
proper orthochronous subgroup, plus space inversion and time-reversal.
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Poincare algebra

Much of the information about any Lie symmetry group is contained in
properties of the group elements near the identity, For the inhomogeneous
Lorentz group, the identity is the transformation Λµ

ν = gµ
ν , aµ = 0, so we

want to study those transformations with

Λµ
ν = gµ

ν + ωµ
ν , aµ = ϵµ (34)

where both ωµ
ν and ϵµ are taken infinitesimal. Eq. (15) becomes

gρσ =gµν
(
gµ
ρ + ωµ

ρ

)
(gν

σ + ων
σ)

=gσρ + ωσρ + ωρσ + O(ω2)

→ωσρ + ωρσ = 0, at O(ω2) (35)

We have 10 independent components: ωσρ (6) and ϵµ (4).
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Poincare algebra

For an infinitesimal Lorentz transformation (34), we have

U(1 + ω, ϵ) = 1 +
1
2
iωρσJ

ρσ − iϵρP
ρ + · · · (36)

Here Jρσ and Pρ are ω- and ϵ-independent operators, and the dots denote
terms of higher order in ω and/or ϵ. In order for U(1 + ω, ϵ) to be unitary,
the operators Jρσ and Pρ must be Hermitian

U†(1 + ω, ϵ) =U−1(1 + ω, ϵ)

↓
Jρσ† =Jρσ, Pρ† = Pρ (37)

Since ωρσ is antisymmetric, we can take its coefficient Jρσ to be
antisymmetric also

Jρσ = −Jσρ (38)
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Poincare algebra

We now examine the Lorentz transformation properties of Jρσ and Pρ. We
consider the product

U(Λ, a)U(1 + ω, ϵ)U−1(Λ, a) (39)

Here the inverse transformation is

U−1(Λ, a) = U
(
Λ−1,−Λ−1a

)
(40)

Inserting (36) into (39) we obtain

U(Λ, a)U(1 + ω, ϵ)U−1(Λ, a)

≈1 +
1
2
iωρσU(Λ, a)JρσU−1(Λ, a)− iϵρU(Λ, a)PρU−1(Λ, a) (41)
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Poincare algebra

On the other hand, we can work out three transformation by the rule (28)

U(Λ, a)U(1 + ω, ϵ)U−1(Λ, a)

=U (Λ(1 + ω),Λϵ+ a)U
(
Λ−1,−Λ−1a

)
=U

(
Λ(1 + ω)Λ−1,−Λ(1 + ω)Λ−1a+ Λϵ+ a

)
=U

(
1 + ΛωΛ−1,Λϵ− ΛωΛ−1a

)
≈1 +

1
2
i(ΛωΛ−1)ρσJ

ρσ − i
(
Λϵ− ΛωΛ−1a

)
ρ
Pρ (42)

To first order in ω and ϵ, equating coefficients of ωρσ and ϵρ on both sides
of Eqs. (41) and (42), we obtain

U(Λ, a)JρσU−1(Λ, a) =Λ ρ
µ Λ

σ
ν (Jµν + Pµaν − Pνaµ)

U(Λ, a)PρU−1(Λ, a) =Λ ρ
µ P

µ (43)
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Poincare algebra

In (43), we can also express

Λ ρ
µ P

µ =
(
Λ−1)ρ

µ
Pµ

Λ ρ
µ Λ

σ
ν Jµν =

(
Λ−1)ρ

µ

(
Λ−1)σ

ν
Jµν (44)
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Poincare algebra

In (43) we consider infinitesimal transformation Λµ
ν = gµ

ν +ω
µ
ν and aµ = ϵµ

and keep only terms of first order in ωµ
ν and ϵµ, Eq. (43) now becomes

i

[
1
2
ωµνJ

µν − ϵµPµ, Jρσ
]
=ω ρ

µ J
µσ + ωνJ

ρν − ϵρPσ + ϵσPρ

i

[
1
2
ωµνJ

µν − ϵµPµ, Pρ

]
=ω ρ

µ P
µ (45)

Equating coefficients of ωµν and ϵµ on both sides of these equations, we
find the commutation rules for the Lie algebra of Poincare group (or
Poincare algebra)

[Pµ,Pν ] =0[
Pµ, Jνλ

]
=− i

(
gλµPν − gµνPλ

)
[Jµν , Jρσ] =− i (gµρJνσ + gνσJµρ − gµσJνρ − gνρJµσ) (46)
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Homework 1: Poincare algebra

Apply infinitesimal transformation Λµ
ν = gµ

ν + ωµ
ν and aµ = ϵµ in (43), try

to prove (45).
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Homework 2: Poincare algebra

The differential operator forms for Jµν and Pµ are

Pµ =i∂µ = (i∂t ,−i∇)

Jµν =xµPν − xνPµ = i (xµ∂ν − xν∂µ) (47)

With the commutation rule [xµ,Pν ] = −igµν and [xµ,Pν ] = −igµν , we can
prove the Poincare algebra (46).
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Lorentz boost and rotation

We can define two groups of algebra

J =(J31, J23, J12) = (J31, J23, J12)

K =(J01, J02, J03) = −(J01, J02, J03) (48)

which corresponds to rotation (J) and Lorentz boost (K ). According to
(46), they satisfy

[Ji , Jj ] =iϵijkJk

[Ji ,Kj ] =iϵijkKk

[Ki ,Kj ] =− iϵijkJk (49)
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Rotation and Lorentz boost

We can define two sets of operators

Ai =
1
2
(Ji + iKi )

Bi =
1
2
(Ji − iKi ) (50)

They satisfy

[Ai ,Aj ] =iϵijkAk

[Bi ,Bj ] =iϵijkBk

[Ai ,Bj ] =0 (51)
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Homework 3: rotation and Lorentz boost

Prove Eqs. (49) and (51) using Eq. (46).
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SL(2,C) group

The SL(2,C) group is the special linear group of 2×2 complex
matrices with determinant 1. It is a 6-dimensional Lie group (since
2×2 complex matrices have 4 real parameters, and det=1 imposes one
constraint, leaving 6 real parameters). It serves as the universal cover
of the proper orthochronous Lorentz group SO+(1, 3).
The SL(2,C) group applies to spinor fields. It is crucial for formulating
relativistic quantum mechanics and quantum field theory for spin-1/2
particles, as it correctly describes how their spin states transform
under Lorentz boosts and rotations.
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SL(2,C) group

The group elements are written as

U(Λ) =e−iJ·θ−iK ·η = e−iA·θA−iB·θB

=exp

[
−i 1

2
(J + iK ) · θA − i

1
2
(J − iK ) · θB

]
=exp

[
−i 1

2
J · (θA + θB) +

1
2
K · (θA − θB)

]
(52)

where
θA = θ − iη, θB = θ + iη (53)

One can verify U†(Λ) = U−1(Λ), i.e. U(Λ) is unitary.
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SL(2,C) group

For the irreducible (S , 0) and (0,S) representations (S is the particle’s spin
quantum number), we have

D(S)(Λ) =e−iA·θA = exp [(−iθ − η) · A]

D
(S)

(Λ) =e−iB·θB = exp [(−iθ + η) · B] (54)

They are related to each other

D(S)† (Λ−1) = D
(S)

(Λ) (55)

Note that D(S)(Λ) and D(S)†(Λ−1) are two inequivalent finite-dimensional
non-unitary representations of the Lorentz group and correspond to those
labeled as (S , 0) and (0, S) respectively.
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Pauli-Lubanski pseudo-vector

As usual we shall look for a maximal set of commuting observables. The
four energy-momentum operators Pµ commute. Let pµ be an “eigenvalue”
of Pµ. Let us now look for Lorentz transformations which leave pµ

invariant, and write

U(Λ) = exp

(
i

2
ωµνJ µν

)
(56)

where J µν are 4×4 matrices as a particular representation for the
generators Jµν

(J µν)αβ = −i
(
gµ
αg

ν
β − gµ

β g
ν
α

)
(57)

One can check that the above satisfies the commutation rules in (46)
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Pauli-Lubanski pseudo-vector

The invariance of p implies ωµνp
ν which is solved according to

ωµν = ϵµνρσs
ρpσ where ϵµνρσ is the totally antisymmetric tensor

ϵ0123 = −ϵ0123 = −1, and sµ a four-vector whose component along pµ is
irrelevant. One can check

ωµν (J µν)αβ p
β = −iωµν (g

µ
αp

ν − gν
αp

µ) = 0 (58)

Thus the Lorentz transformations which leave pµ invariant are represented
as

U(Λ(p)) = exp

(
i

2
ϵρµνσJ µνpσsρ

)
(59)
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Pauli-Lubanski pseudo-vector

Here we defined Pauli-Lubanski pseudo-vector

Wρ = −1
2
ϵρµνσJ

µνPσ = −1
2
ϵρµνσP

σJµν (60)

Due to ϵρµνσ [Pσ, Jµν ] = 0 from (46), the position of two operators Jµν

and Pσ does not matter. We have the identity

W (P) · P = 0 (61)

One easily finds from (46)

[Wµ,Pν ] =0, [Wµ,Wν ] = −iϵµνρσW ρPσ

[Jµν ,Wρ] =i (gνρWµ − gµρWν) (62)

The latter indicating that Wµ behaves as a four-vector under Lorentz
transformations.

Qun Wang (USTC/AUST) Spin in relativistic quantum theory Fudan ALICE School 46 / 88



Pauli-Lubanski pseudo-vector

Let then |p, σ⟩ be a vector of representation space such that
Pµ |p, σ⟩ = pµ, so we have

U(Λ(p)) |p, σ⟩ = exp (−iWρs
ρ) |p, σ⟩ (63)

It can be shown that

Pµ exp (−iWρs
ρ) |p, σ⟩ =exp (−iWρs

ρ)Pµ |p, σ⟩
=pµ exp (−iWρs

ρ) |p, σ⟩ (64)

because [Wµ,Pν ] = 0.

Qun Wang (USTC/AUST) Spin in relativistic quantum theory Fudan ALICE School 47 / 88



Pauli-Lubanski pseudo-vector

From these commutation rules one observes that PµP
µ = P2 and

WµW
µ = W 2 connnute with all Pµ and Jµν , so P2 = m2 and W 2 are two

commutable invariant operators. The proof is simple

[Jµν , g
ρσWρWσ] =igρσ (gνρWµ − gµρWν)Wσ + igρσWρ (gνσWµ − gµσWν)

=i (WνWµ −WµWν) + i (WµWν −WνWµ) = 0
[Jµν , g

ρσPρPσ] =igρσ (gνρPµ − gµρPν)Pσ + igρσWρ (gνσPµ − gµσPν)

=i (PµPν − PνPµ) + i (PνPµ − PµPν) = 0 (65)

So P2 = m2 and W 2/m2 = S(S + 1) (spin quantum number) can be
regarded as two intrinsic constants to characterize a particle.
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Pauli-Lubanski pseudo-vector

One can attach to each p three space-like vectors n(i)µ(p) (i = 1, 2, 3)

n(i)(p) · n(j)(p) =− δij
p · n(i)(p) =0

gijn
(i)
µ (p)n(j)ν (p) =gµν

ϵµνρσn(α)µ n(β)ν n(γ)ρ n(δ)σ =− ϵαβγδ (66)

where we assume n(0)µ(p) = pµ/m. We can expand W µ(p) as

W µ(p) =
3∑

i=1

Wi (p)n
(i)µ(p) (67)
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Spin vector

Here we can extract Wi (p) as

Wi (p) =−W (p) · n(i)(p)

=
1
2
ϵµνρσJ

µνpσn(i)ρ(p) (68)

So one can define three spin operators

Si (p) =
1
m
Wi (p) =

1
2m

ϵµνρσJ
µνpσn(i)ρ(p) (69)

One can verify the commutators

[Si (p), Sj(p)] = iϵijkSk(p) (70)
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Spin vector

Here Si (p) are generators of SU(2) subgroup of proper orthochronous
Lorentz group which leaves p invariant. Thus we have

3∑
i=1

S2
i (p) =

1
m2

3∑
i=1

W 2
i (p) = −

1
m2W

2(p) (71)

which has possible eigenvalues S(S + 1) with S being integer or
half-integer. So P2 = m2 and Ŝ2 = S(S + 1) can characterize a particle.
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One particle spin-momentum state

A particle is defined as a spin-momentum quantum state in its rest frame

|m, σ⟩ (72)

where σ is the spin quantum number along the spin quantization direction
(magnetic quantum number)

σ = −S ,−S + 1,−S + 2, · · · ,S − 1,S (73)

Here S is the spin quantum number which is defined through

Ŝ2 |m, σ⟩ =S(S + 1) |m, σ⟩
Ŝz |m, σ⟩ =σ |m, σ⟩ (74)

where we choose the z-axis as the spin quantization direction.
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One particle spin-momentum state

Here m is the particle’s mass defined through

Pµ |m, σ⟩ =pµ |m, σ⟩ = (m, 0) |m, σ⟩
P2 |m, σ⟩ =p2 |m, σ⟩ = m2 |m, σ⟩

where pµ = (m, 0) is the four-momentum of the particle at rest.
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One particle spin-momentum state

When the particle is not at rest but has an on-shell four-momentum
pµ = (Ep,p), its spin-momemtum state can be represented by U (L(p)) as

|p, σ⟩ ≡ |p, σ⟩ = U (L(p)) |m, σ⟩ (75)

where L(p) ≡ Lµν(p) denotes the Lorentz transformation that transforms a
particle at rest to pµ = (Ep, p),

L0
0 =

Ep

m
, L0

i =
1
m

pi , L
i
0 =

1
m

pi

Lij = δij − p̂i p̂j +
Ep

m
p̂i p̂j (76)

The state is normalized as〈
p′, σ′|p, σ

〉
= 2Ep(2π)3δ(3)

(
p′ − p

)
δσ′σ (77)
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Lorentz transformation of one particle state

The Lorentz transformation of a spin-momentum state is

U (Λ) |p, σ⟩ = U (Λ)U (L(p)) |m, σ⟩
= U (L (Λp))U

(
L−1 (Λp) ΛL(p)

)
|m, σ⟩

= Σσ′U (L (Λp))
∣∣m, σ′〉 〈m, σ′∣∣U (L−1 (Λp) ΛL(p)

)
|m, σ⟩

= Σσ′
∣∣Λp, σ′〉 〈m, σ′∣∣U [L−1 (Λp) ΛL(p)

]
|m, σ⟩

= Σσ′
∣∣Λp, σ′〉D(S)

σ′σ

[
L−1 (Λp) ΛL(p)

]
(78)

where we defined D-matrix element for the Wigner rotation R

D
(S)
σ′σ(R) =

〈
m, σ′

∣∣U(R) |m, σ⟩ , R = L−1 (Λp) ΛL(p) (79)

The representation of the little group (Wigner rotation) must be unitary, so
we have

D(S)†(R) = D(S)−1(R) = D(S)(R−1) (80)
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Lorentz transformation of one particle state

The creation and annihilation operators transform as

U (Λ) a†p,σU
−1 (Λ) = a†Λp,σ′D

(S)
σ′σ

[
L−1 (Λp) ΛL(p)

]
(81)

U (Λ) ap,σU
−1 (Λ) = D

(S)
σσ′
[
L−1(p)Λ−1L (Λp)

]
aΛp,σ′ (82)

The first equality follows Eq. (78) as

U (Λ) |p, σ⟩ =U(Λ)a†p,σU
−1(Λ)U(Λ) |0⟩

=U(Λ)a†p,σU
−1(Λ) |0⟩

=a†Λp,σ′ |0⟩D(S)
σ′σ

[
L−1 (Λp) ΛL(p)

]
(83)

where we used U(Λ) |0⟩ = |0⟩ and repetition of indices means summation.

Qun Wang (USTC/AUST) Spin in relativistic quantum theory Fudan ALICE School 56 / 88



Homework 4: Lorentz transformation of one particle state

Try to derive (82) by taking Hermitian conjugate of (81), using the
property that U (Λ) is unitary.
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Charge conjugate form

For a rotation, we have the relation

D(S)∗(R) = CD(S)(R)C−1 (84)

where C is a (2S + 1)× (2S + 1) unitary matrix satisfying

C † =CT = C−1 = (−1)2SC

C 2 =(−1)2S I

C =C−1(−1)2S (85)

The explicit form of Eq. (84) can be written as

D
(S)
σσ′(R) =

[
CD(S)

(
R−1)C−1

]
σ′σ

(86)
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Charge conjugate form

By (86) we can rewrite Eqs. (81,82) as

U (Λ) a†p,σU
−1 (Λ) =

(
CD(S)

[
L−1(p)Λ−1L (Λp)

]
C−1

)
σσ′

a†Λp,σ′

U (Λ) ap,σU
−1 (Λ) =aΛp,σ′

(
CD(S)

[
L−1 (Λp) ΛL(p)

]
C−1

)
σ′σ

(87)

We can use above equation to define the transformation of the anti-particle
operator b† as

U (Λ) b†p,σU
−1 (Λ) =

(
CD(S)

[
L−1(p)Λ−1L (Λp)

]
C−1

)
σσ′

b†Λp,σ′

U (Λ) bp,σU
−1 (Λ) =bΛp,σ′

(
CD(S)

[
L−1 (Λp) ΛL(p)

]
C−1

)
σ′σ

(88)
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Lorentz transformation of quantum fields

We use the symbols

αp,σ =Dσσ′ (L(p)) ap,σ′

βp,σ =
[
D (L(p))C−1]

σσ′ b
†
p,σ′

αp,σ =D
(S)†
σσ′

(
L−1(p)

)
ap,σ′

βp,σ =
[
D(S)† (L−1(p)

)
C
]
σσ′

b†p,σ′ (89)

We can verify

U(Λ)O(p, σ)U−1(Λ) = Dσσ′
(
Λ−1)O(Λp, σ′) (90)

where O(p, σ) = αp,σ, βp,σ, αp,σ, βp,σ.
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Homework 5: Lorentz transformation of quantum fields

Prove Eq. (90).
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Lorentz transformation of quantum fields

So we can construct the field with αp,σ, βp,σ, αp,σ, βp,σ

ψσ(x) =

∫
d3p

(2π)32Ep
αp,σe

−ipx + βp,σe
ipx

ψ̃σ(x) =

∫
d3p

(2π)32Ep
αp,σe

−ipx + βp,σe
ipx (91)

By (90) we can prove

U (Λ)ψσ(x)U
−1 (Λ) =D(S)

στ

(
Λ−1)ψτ (Λx)

U (Λ) ψ̃σ(x)U
−1 (Λ) =D(S)

στ

(
Λ−1) ψ̃τ (Λx) (92)
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Lorentz transformation of quantum fields

The (anti-) commutation relations of creation and annihilation operators in
(91) are related to the normalization of the states (77) and read[

ap,σ, a
†
p′,σ′

]
±
=
[
bp,σ, b

†
p′,σ′

]
±

=2Ep(2π)3δ(3)
(
p − p′) δσ′σ (93)

The 2(2S + 1) field degrees of freedom in (91) are needed to represent
particles and antiparticles. We have

ψ̃τ (x) = Cτσψ
c†
σ (x) (94)

where ψc
σ(x) is the charge-conjugated field, which is obtained from ψσ(x)

by swapping a↔ b and a† ↔ b† in (91).
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Homework 6: Lorentz transformation of quantum fields

Prove Eq. (94).
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Quantum fields for spin-S particles

We can define a 2(2S + 1)-component field

Ψ(x) =

∫
d3p

(2π)32Ep

[
U (p) ape

−ip·x + V (p) b†pe
ip·x
]

Ψ(x) =

∫
d3p

(2π)32Ep

[
a†pU (p) e ip·x + bpV (p) e−ip·x

]
(95)

where ap and b†p are (2S + 1)-dimensional column vectors of the
annihilation and creation operators., and 2(2S + 1)-component spinors

U(p) =

(
D(S) (L(p))

D(S)† (L−1(p)
) ) , V (p) =

(
D(S) (L(p))C−1

D(S)† (L−1(p)
)
C

)
U(p) =U†(p)Γ0 =

[
D(S)

(
L−1(p)

)
,D(S)† (L(p))

]
V (p) =V †(p)Γ0 =

[
C−1D(S)

(
L−1(p)

)
,CD(S)† (L(p))

]
(96)
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Quantum fields for spin-S particles

Here Γ0 is the 2(2S + 1)× 2(2S + 1) matrix

Γ0 =

(
0 I
I 0

)
(97)

Here are some properties of spinors

U(p)U(p) =
[
D(S)

(
L−1(p)

)
, D(S)† (L(p))

]( D(S) (L(p))

D(S)† (L−1(p)
) ) = 2I

V (p)V (p) =
[
C−1D(S)

(
L−1(p)

)
, CD(S)† (L(p))

]( D(S) (L(p))C−1

D(S)† (L−1(p)
)
C

)
= 2C 2 = 2(−1)2S (98)
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Quantum fields for spin-S particles

U(p)U(p) =

(
D(S) (L(p))

D(S)† (L−1(p)
) )(D(S)

(
L−1(p)

)
, D(S)† (L(p))

)
=

(
I D(S)

[
L(p)L†(p)

]
D(S)

[(
L(p)L†(p)

)−1
]

I

)

V (p)V (p) =

(
(−1)2S I D(S)

[
L(p)L†(p)

]
D(S)

[(
L(p)L†(p)

)−1
]

(−1)2S I

)
(99)

The spin-momentum states can be extracted as

|p, σ⟩ = a†p,σ |0⟩ = Ep

∫
d4xΨτ (x)Uτσ(p)e

−ip·x |0⟩

⟨p, σ| = ⟨0| ap,σ = Ep ⟨0|
∫

d4xUστ (p)Ψτ (x)e
ip·x (100)
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Density operator

The density operator in a rotation frame is defined as

ρ̂ =
1
Z

exp
[
β
(
−Ĥ + µQ̂ + ω · Ŝ

)]
PV (101)

where PV is the projection operator onto the localized states |hV ⟩, where
V means the field exsits in the volume V and vanishes out of the volume.
The one-particle matrix elements of the density operator are

fτσ(p) ∼
〈
p, τ

∣∣∣exp [β (−Ĥ + µQ̂ + ω · Ĵ
)]

PV

∣∣∣ p, σ〉
= e−βEp+βµq

〈
p, τ

∣∣∣exp(βω · Ĵ)PV

∣∣∣ p, σ〉
= e−βEp+βµq

〈
p, τ

∣∣∣R̂ω (ϕ)PV

∣∣∣ p, σ〉
= e−βEp+βµq

∫
d3p′

(2π)32Ep′

〈
p, τ

∣∣∣R̂ω (ϕ)
∣∣∣ p′, σ′〉

×
〈
p′, σ′

∣∣PV |p, σ⟩ (102)
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Density operator

Here R̂ω (ϕ) is the rotation around ω of an angle ϕ = iβω. Inserting a
compact basis into the R̂ and PV , we have〈

p, τ
∣∣∣R̂ω(ϕ)

∣∣∣ p′, σ′〉 =
〈
p, τ |Rωp

′, σ
〉
D

(S)
σσ′

[
L−1

(
R̂ωp

′
)
R̂ωL

(
p′
)]

= 2Ep(2π)3δ(3)
(
p − R̂ωp

′
)
δτσ

×D(S)
σσ′

[
L−1

(
R̂ωp

′
)
R̂ωL

(
p′
)]

= 2Ep(2π)3δ(3)
(
p − R̂ωp

′
)

×D(S)
τσ′

[
L−1

(
R̂ωp

′
)
R̂ωL

(
p′
)]

(103)

Here the D(S) is the representation of SL(2,C) with spin S .
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Matrix elements of density operators

For the matrix element of PV we have〈
p′, σ′

∣∣PV |p, σ⟩ =
∑
hV

〈
p′, σ′

∣∣ hV ⟩ ⟨hV |p, σ⟩
= EpEp′

∫
dx1dx2 ⟨0|Uσ′τ1Ψτ1 (x1) e

ip′·x1 |hV ⟩

× ⟨hV |Ψτ2 (x2)Uτ2σe
−ip·x2 |0⟩

= EpEp′

∫
dx1dx2e

ip′·x1e−ip·x2Uσ′τ1

(
p′
)
Uτ2σ(p)

×
∑
hV

⟨0|Ψτ1 (x1) |hV ⟩ ⟨hV |Ψτ2 (x2) |0⟩

= EpEp′

∫
dx1dx2e

ip′·x1e−ip·x2 ⟨0|hV ⟩ ⟨hV |0⟩

×Uσ′τ1

(
p′
)
Uτ2σ(p)

∑
hV

ΨV ,τ1 (x1)ΨV ,τ2 (x2) (104)
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Matrix elements of density operators

Here |hV ⟩ is the eignstate of Ψ(x) with the eignvalue ΨV inside the
volume V

ΨV (x) =

{
0 x /∈ V

Ψ(x) x ∈ V
(105)

We make an ansatz

Wτ1τ2

(
x +

y

2
, x − y

2

)
=
∑
hV

ΨV ,τ1 (x1)ΨV ,τ2 (x2) ⟨0|hV ⟩ ⟨hV |0⟩

=δτ1τ2W
(
x +

y

2
, x − y

2

)
(106)

where we used x1,2 = x ± y/2.
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Matrix elements of density operators

Then we obtain

Int =
∫

dx1dx2e
ip′·(x+y/2)e−ip·(x−y/2)Wτ1τ2

(
x +

y

2
, x − y

2

)
=δτ1τ2

∫
dxdye−i(p−p′)·xe i(p+p′)·y/2W

(
x +

y

2
, x − y

2

)
=δτ1τ2W̃

(
p − p′, p + p′

)
(107)

With above relation, Eq. (104) becomes〈
p′, σ′ |PV | p, σ

〉
= EpEp′W̃

(
p − p′, p + p′

) [
U
(
p′
)
U(p)

]
σ′σ

(108)
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Matrix elements of density operators

We put (103) and (104) into ()

fτσ(p) ∼
〈
p, τ

∣∣∣exp [β (−ĥ + µq̂ + ω · Ĵ
)]

PV

∣∣∣ p, σ〉
=e−βEp+βµq

∫
d3p′

(2π)32Ep′

〈
p, τ

∣∣∣R̂ω (ϕ)
∣∣∣ p′, σ′〉 〈p′, σ′∣∣PV |p, σ⟩

=E 2
p e

−βEp+βµq

∫
d3p′δ(3)

(
p − R̂ωp

′
)
D

(S)
τσ′

[
L−1

(
R̂ωp

′
)
R̂ωL

(
p′
)]

× W̃
(
p − p′, p + p′

)
×
[
D(S)

(
L−1 (p′) L(p)

)
+ D(S)

(
L−1(p)L

(
p′
))†]

σ′σ

≈E 2
p e

−βEp+βµqW̃
(
p − R̂−1

ω p, p + R̂−1
ω p

)
×
{
D(S)
τσ

[
L−1(p)R̂ωL(p)

]
+ D(S)

τσ

[
L†(p)R̂ωL

−1†(p)
]}
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Spin distribution

So the distribution can be defined as

fτσ(p) =
1
2
e−βEp+βµq

×
{
D(S)
τσ

[
L−1(p)R̂ωL(p)

]
+ D(S)

τσ

[
L†(p)R̂ωL

−1†(p)
]}

(109)

Taking the trace of the density matrix,

f (p) = e−βEp+βµq Tr
[
D(S) (iβω)

]
= e−βEp+βµqχ (βω) (110)

where

χ (βω) = Tr
[
D(S) (iβω)

]
=

sinh
[
βω
(
S + 1

2

)]
sinh

(1
2βω

) (111)
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Wigner functions

Wigner functions for spin-1/2 particles

Wαβ (x , k) =−
1

(2π)4

∫
d4ye−iky

〈
Ψα

(
x +

y

2

)
Ψβ

(
x − y

2

)〉
=

1
(2π)4

∫
d4ye−iky

〈
ΨB

(
x − y

2

)
ΨA

(
x +

y

2

)〉
=

∫
d3p

(2π)32Ep

[
δ4 (k − p) ur (p) frs (x , p) us (p)

−δ4 (k + p) vr (p) f
T
rs (x , p) v s (p)

]
(112)

where

frs (x , p) =
1

2(2π)3

∫
d4uδ (u · p) e−iu·x

〈
a†p−u/2,sap+u/2,r

〉
f sr (x , p) =

1
2(2π)3

∫
d4uδ (u · p) e−iu·x

〈
b†p−u/2,rap+u/2,s

〉
(113)

Qun Wang (USTC/AUST) Spin in relativistic quantum theory Fudan ALICE School 75 / 88



Wigner functions

So the expectation value of any 4× 4 matrix O can be obtained by〈
ΨOΨ

〉
=

∫
d4kTr ⟨OW (x , k)⟩

=

∫
d3p

(2π)32Ep
{Tr [Our (p) frs (x , p) us (p)]

−Tr
[
Ovr (p) f

T
rs (x , p) v s (p)

]}
=

∫
d3p

(2π)32Ep
[us (p)Our (p) frs (x , p)

−v s (p)Ovr (p) f
T
rs (x , p)

]
(114)
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Wigner functions

The 4× 4 matrix O corresponding to the current vector, the
energy-momentum and spin tensor are

Tµν =
i

2
γµ
←→
∂ ν

jµ = γµ

Sλ,µν =
1
2

{
γλ,Σµν

}
(115)

Note that the energy-momentum and spin tensor are all canonical.
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Spin distribution functions

According to (109), we have

frs =e−β·p+ξ 1
2

[
D(S)

(
L−1 (p) R̂ωL (p)

)
rs

+D(S)

(
L† (p) R̂ω

(
L† (p)

)−1
)

rs

]
(116)

where ξ = µq/T . The trace of this distribution corresponding to the
particle density is

Trs f =
∑
s

fss = e−β·p−βµqTrs
[
D(S)

(
R̂ω

) ]
(117)

We apply it to spin-1/2 particles as

f = e−β·p+ξ 1
2m

U (p) exp

(
1
2
βωΣz

)
U (p) (118)
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Spin distribution functions

Here U(p) is a 4×2 matrix

U(p) =
√
m

(
D(1/2) (L(p))

D(1/2)† (L−1(p)
) )

(119)

it has a additional factor
√
m compared with Eq. (96), and we assume

D(1/2) (iβω) = exp

(
1
2
βωσ3

)
(120)

and

Σz =

(
σ3 0
0 σ3

)
(121)
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Spin distribution functions

We can define
ωµν = βω

(
δ1µδ

2
ν − δ2µδ1ν

)
(122)

So Eq. (118) can be rewritten as

f = e−β·p+ξ 1
2m

U(p) exp

(
1
2
ωµνΣ

µν

)
U(p)

f = −e−β·p+ξ 1
2m

[
V (p) exp

(
−1

2
ωµνΣ

µν

)
V (p)

]T
(123)
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Spin distribution functions

We can make an ansatz that distribution can be expressed as

f =
1

2m
U(p)X (p)U(p)

f = − 1
2m

[
V (p)X (p)V (p)

]T (124)

and X (p) and X (p) in global equalibrium state are

X (p) =

[
exp

(
β · p − ξ − 1

2
ωµνΣ

µν

)
+ I

]−1

X (p) =

[
exp

(
β · p + ξ +

1
2
ωµνΣ

µν

)
+ I

]−1

(125)
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Spin tensors

We can construct spin tensors〈
ΨSλ,µνΨ

〉
=

1
2

∫
d3p

(2π)32Ep
tr2
[
U (p)

{
γλ,Σµν

}
U (p) f (x , p)

]
− tr2

[
V (p)

{
γλ,Σµν

}
V (p) f

T
(x , p)

]
=

∫
d3p

(2π)32Ep

(
pνΘλµ + pµΘλν + pλΘµν

+pνΘ
λµ

+ pµΘ
λν

+ pλΘ
µν
)

where the tensor Θµν and Θ
µν are defined as

Θµν = tr [ΣµνX (p)]

Θ
µν

= −tr
[
ΣµνX (p)

]
(126)
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Spin tensors

The tensor Θµν can be written as in form of derivative of ωµν

Θµν =Tr

{
Σµν

[
exp

(
β · p − ξ − 1

2
ωµνΣ

µν

)
+ I

]−1
}

=
∞∑
n=1

Tr
[
Σµν(−1)n+1 exp

(
−nβ · p + nξ +

1
2
nωµνΣ

µν

)]

=2
∂

∂ωµν

∞∑
n=1

(−1)n+1

n
exp (−nβ · p + nξ)Tr

[
exp

(
1
2
nωµνΣ

µν

)]
=2

∂

∂ωµν
Tr
[
ln

(
I + exp

(
−β · p + ξ +

1
2
ωµνΣ

µν

))]
≈nF (1− nF )ω

µν (127)
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Spin tensors

The Pauli-Lubanski vector is defined as

Sµ = − 1
2m

ϵµρστJ
ρσpτ (128)

where Jρσ are generators of Poincare algebra corresponding to Lorentz
boost and rotation and are given by

Jρσ = (2π)3
dJ 0,ρσ (x , p)

d3p
(129)

The total angular momentum operator is defined as

J λ,ρσ (x , p) = xρTλσ − xσTλρ + Sλ,ρσ (130)
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Spin tensors

The stress tensor and density are defined as

Tµν =

∫
d3p

(2π)32Ep
pµpν

(
tr2f + tr2f

)
Sλ,µν =

∫
d3p

(2π)32Ep

(
pνΘλµ + pµΘλν + pλΘµν

+pνΘ
λµ

+ pµΘ
λν

+ pλΘ
µν
)

(131)
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Spin tensors

For the particle, we have

S0,ρσ =
1
2
[
(xρpσ − xσpρ) tr2f + (xρpσ − xσpρ) tr2f

]
+

1
2Ep

(
pσΘ0ρ + pρΘ0σ + p0Θρσ

+ pσΘ
0ρ

+ pρΘ
0σ

+ p0Θ
ρσ
)

↓ ϵµρστS0,ρσ

=
1
2

(
Θρσ +Θ

ρσ
)

(132)

the terms proportional to pρ or pσ vanish for the
ϵµρστp

τpρ = ϵµρστp
τpσ = 0. The average polarization defined in Eq.(128)

can be simplified to

⟨Sµ(p)⟩ = − 1
4tr2f

ϵµρστΘ
ρσ p

τ

m
(133)
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Spin vector on hyper-surface

The momentum spectra can be obtained by integration over a volume V
on freezeout hyper-surface

⟨Sµ (x , p)⟩ = −1
4

∫
V d3xϵµρστΘ

ρσ pτ

m∫
V d3xtr2f

= −1
4

∫
∂V dΣλ

pλ

E ϵµρστΘ
ρσ pτ

m∫
∂V dΣλ

pλ

E tr2f

= −1
4
ϵµρστ

pτ

m

∫
∂V dΣλp

λΘρσ∫
∂V dΣλpλtr2f

≃ −1
8
ϵµρστ

pτ

m

∫
∂V dΣλp

λnF (1− nF )ω
ρσ∫

∂V dΣλpλnF
(134)
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Spin vector on hyper-surface

Here the hypersurface dΣλ = d3xt̂µ, the t̂µ is the normal vector of the
hypersurface. The polarization for anti-particles can be obtained by
replacing f and Θµν by f and Θ

µν respectively.
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