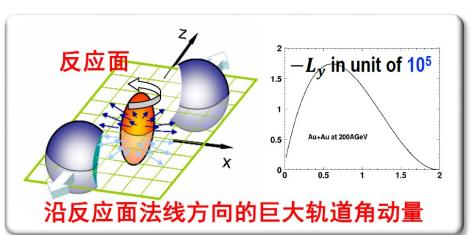
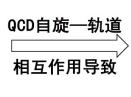
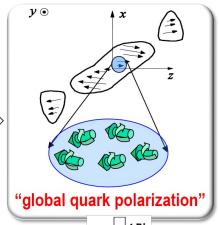
Experiment: Spin physics II

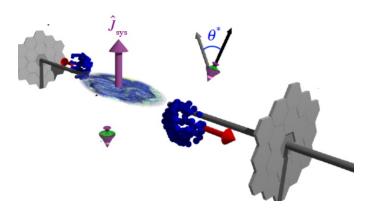
Qinghua Xu(徐庆华)

Shandong University(山东大学)


November 7, 2025


1st ALICE Experiment and Heavy-Ion Physics School Nov. 3-9, Fudan University, Shanghai


Λ Global polarization in heavy ion collisions


 Globally polarized quark gluon plasma (QGP) in non-central relativistic heavy ion collisions

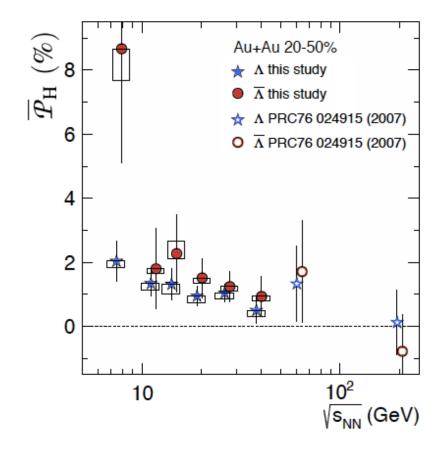
Zuo-tang Liang & Xin-Nian Wang, PRL94, 102301(2005); PLB629, 20(2005).

-Measurements started soon after the prediction, first data available in 2007 from RHIC-STAR

$$P_H = P_{\overline{H}} = P_q = P_{\overline{q}}$$

●矢量介子整体自旋排列

(spin alignment)


$$\rho_{00} = \frac{1 - P_q^2}{3 + P_q^2}$$

Λ Global polarization in heavy ion collisions

 Λ global polarization observed with STAR BES-I (Nature cover), new direction – spin physics in heavy ion

STAR, Nature 548(2017)62

Measurement of global polarization at STAR

The Λ polarization can be determined through the angular distribution of its weak decay products.

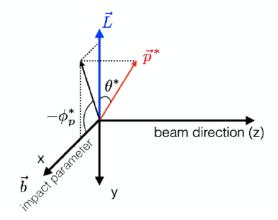
$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha_H \mathbf{P}_H^* \cdot \widehat{\mathbf{p}}_B^*)$$

$$\mathbf{P}_H: hyperon \ polarization$$

$$\widehat{\mathbf{p}}_B: unit \ vector \ of \ daughter \ baryon \ momentum$$

 P_H : hyperon polarization

 α_H : hyperon decay parameter


At STAR, the global polarization has been extracted with

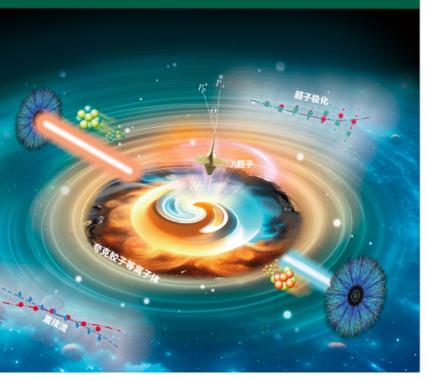
First adopted in PRC76, 024915 (2007)

$$P_{\Lambda} = \frac{8}{\pi \alpha_{\Lambda}} \frac{1}{A_0} \frac{\langle \sin(\Psi_1 - \phi_p^*) \rangle}{Res(\Psi_1)}$$

$$\alpha_{\Lambda} = -\alpha_{\overline{\Lambda}} = 0.732 \pm 0.014$$

Ψ₁: azimuthal angle of 1st order reaction plane

-In this way, the detector acceptance is largely avoided, but rather a scale effect with A₀

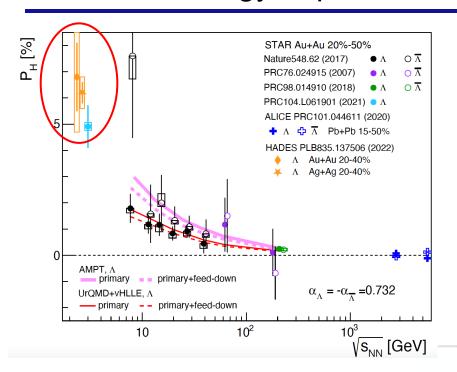

物理学报专题: 高能重离子碰撞中的自旋与手征效应

物理学报

a

ISSN 1000-3290

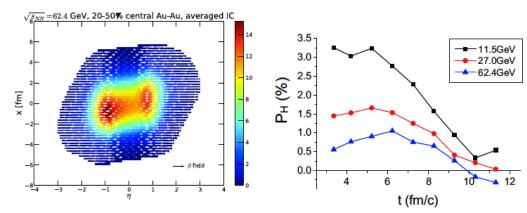
Acta Physica Sinica



客座编辑:梁作堂、王群、马余刚

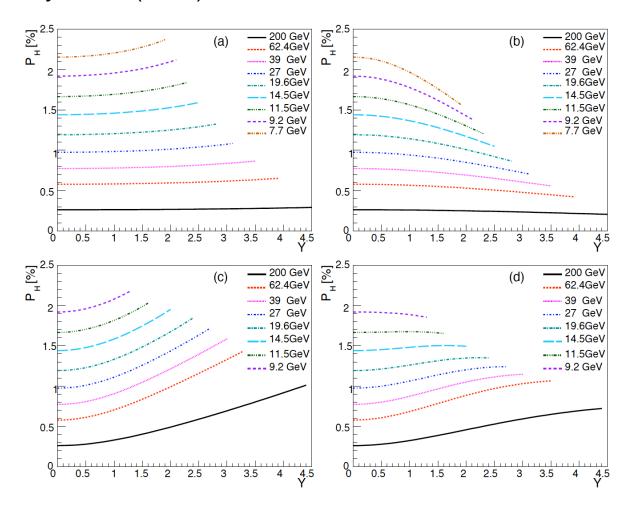
物 理 学 报 第72 卷 第7期 2023 年 4 月 5 日

	专题: 高能重离子碰撞过程的自旋与手征效应
070101	高能重离子碰撞过程的自旋与手征效应专题编者按 梁作堂 王群 马余刚
	综述
071202	相对论自旋流体力学 滿实 黄旭光
072401	重离子碰撞中 QCD 物质整体极化的实验测量
072501	强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化 … 高建华 黄旭光 梁作堂 王群 王新年
	重离子碰撞中的矢量介子自旋排列
072503	高能重离子超边缘碰撞中极化光致反应 湖实 肖博文 周剑 周稚瑾
	研究论文
	引力形状因子的介质修正 林树 田家源
072504	RHIC 能区 Au+Au 碰撞中带电粒子直接流与超子整体极化的计算与分析 ·····
	江泽方 吴祥宇 余华清 曹杉杉 张本威
	专题: 高能重离子碰撞过程的自旋与手征效应
112401	专题: 高能重离子碰撞过程的自旋与手征效应
112401	专题: 高能重离子碰撞过程的自旋与手征效应 观点和展望
	专题: 高能重离子碰撞过程的自旋与手征效应 观点和展望 夸克物质中的超子整体极化与矢量介子自旋排列 ····································
	专题: 高能重离子碰撞过程的自旋与手征效应 观点和展望 夸克物质中的超子整体极化与矢量介子自旋排列 · · · · · · · · · · · · · · · · · · ·
111201 112501	专题: 高能重离子碰撞过程的自旋与手征效应 观点和展望 夸克物质中的超子整体极化与矢量介子自旋排列
111201 112501 112502	专题: 高能重离子碰撞过程的自旋与手征效应 观点和展望 夸克物质中的超子整体极化与矢量介子自旋排列
111201 112501 112502	专题: 高能重离子碰撞过程的自旋与手征效应 观点和展望 夸克物质中的超子整体极化与矢量介子自旋排列
111201 112501 112502 112504	专题: 高能重离子碰撞过程的自旋与手征效应 观点和展望 夸克物质中的超子整体极化与矢量介子自旋排列

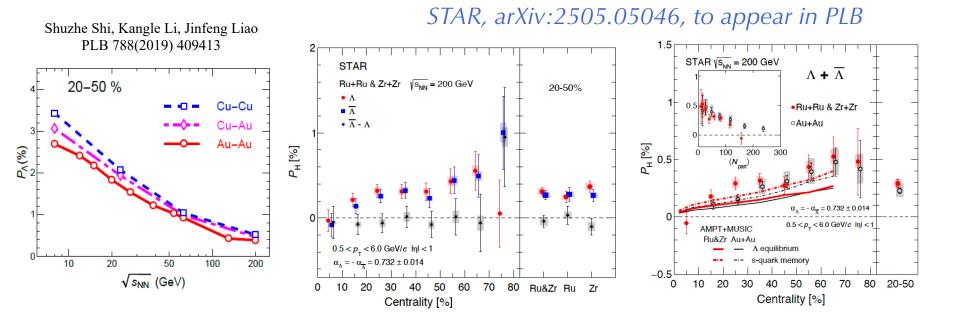

Energy dependence of global polarization

- HADES data at √s=2.4GeV Au+Au and 2.7 GeV Ag+Ag
- STAR data down to √s= 3 GeV
- ALICE results at 2.76 and 5.02 TeV Pb+Pb, consistent with zero within uncertainties

H. Li et al., PRC96, 054908 (2017), AMPT
Y. Sun and C.-M. Ko, PRC96, 024906 (2017), CKE
Y. Xie et al., PRC95, 031901(R) (2017), PICR
Y. B. Ivanov et al., PRC100, 014908 (2019), 3FD model
I.Karpenko, F. Becattini, EPJ(2017)77.213
Y. Xie, D. Wang, L. P. Csernai, PRC95, 031901(R) (2017)

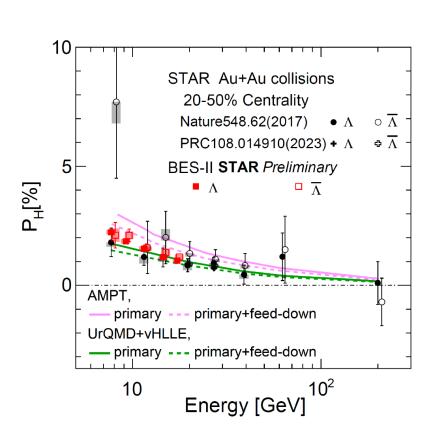

- Increasing trend toward lower energy described by various models
- Stronger shear flow in forward/ backward regions+ baryon stopping with limited acceptance (related to rapidity dependence)
- Polarization continue to increase at low energy?

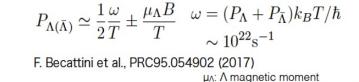
- Y. Ivanov, Phys. Rev. C103, 031903(2021)

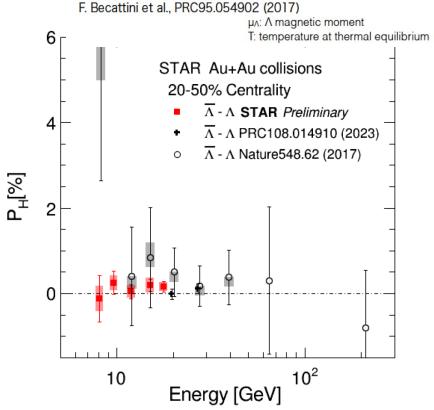

Rapidity dependence of global polarization

 Zuo-Tang Liang, Jun Song, Isaac Upsal, Qun Wang and Zhang-Bu Xu, Chin. Phys.C 45 (2021), 014102

Global polarization in Ru+Ru and Zr+Zr collisions

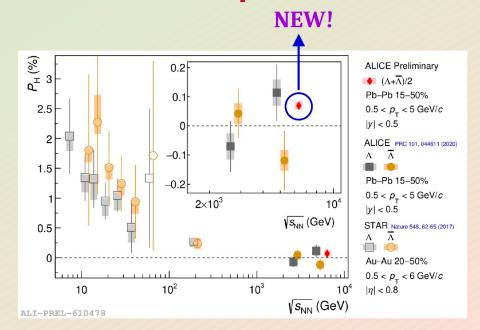

- Global polarization difference from different magnetic field in Zr+Zr and Ru+Ru?
- System size dependence of global polarization?

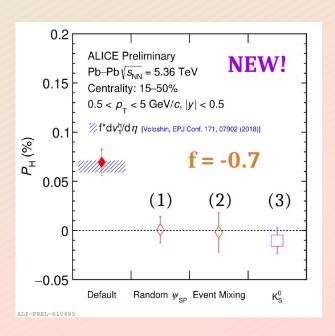



- ➤ Significant global polarization observed, P_{Λ} and $P_{\overline{\Lambda}}$ increase with centrality.
- \triangleright No significant difference between P_{Λ} and $P_{\overline{\Lambda}}$ in Ru+Ru and Zr+Zr collisions.
- ► Global polarization of $\Lambda + \overline{\Lambda}$ are consistent between Ru+Ru/Zr+Zr and Au+Au

$\Lambda(\overline{\Lambda})$ global polarization from STAR BES-II

• Splitting of $\Lambda(\overline{\Lambda})$ global polarization due to the magnetic field ?




- \triangleright No splitting between $\Lambda(\overline{\Lambda})$ polarization with 10 times more statistics than BES-I
- More data coming from STAR BES-II FXT with energy down to 3 GeV

New Results from ALICE on $\Lambda(\overline{\Lambda})$ global polarization

- Prottay Das @ SPIN2025

Global polarization measurement at LHC

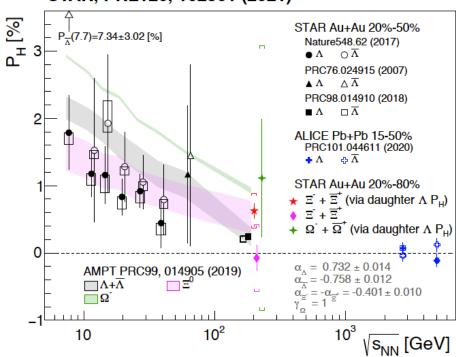
- \checkmark First observation of non-zero polarization of hyperons at LHC energies with 5σ significance
- ✓ Vorticity at LHC energy: (3.27± 0.66) 10²⁰ s⁻¹
- ✓ Average polarization consistent with the empirical prediction based on directed flow slope at mid-rapidity
- ✓ Several null hypothesis tests (1, 2, 3) performed succesfully

23

$oldsymbol{\mathcal{I}}$ and $oldsymbol{\Omega}$ global polarization measurement

- Two possible ways of measurement:
- Direct measurement via weak decay, but subject to small decay parameters.

hyperon	decay mode	aн	magnetic moment µн	spin
∧ (uds)	Λ→pπ- (BR: 63.9%)	0.732	-0.613	1/2
<u>=</u> - (dss)	Ξ-→Λπ- (BR: 99.9%)	-0.401	-0.6507	1/2
Ω- (sss)	Ω-→ΛK- (BR: 67.8%)	0.0157	-2.02	3/2


2) Through the polarization transfer to daughter *Λ* in the decay process

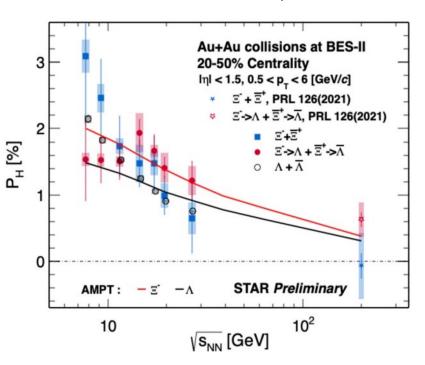
$$\mathbf{P}_{\Lambda}^{*} = C_{\Xi^{-}\Lambda} \mathbf{P}_{\Xi}^{*} = \frac{1}{3} (1 + 2\gamma_{\Xi}) \mathbf{P}_{\Xi}^{*}. \quad C_{\Xi^{-}\Lambda} = +0.944$$

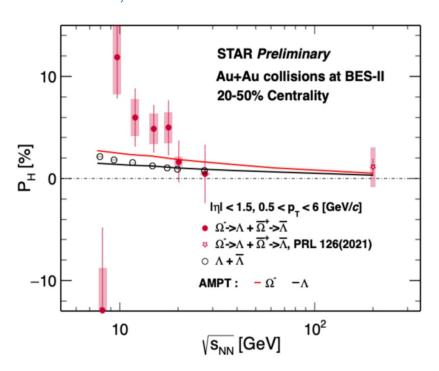
 $\mathbf{P}_{\Lambda}^{*} = C_{\Omega^{-}\Lambda} \mathbf{P}_{\Omega}^{*} = \frac{1}{5} (1 + 4\gamma_{\Omega}) \mathbf{P}_{\Omega}^{*}.$

- γ _Ω is not known, with estimation ~1, C~1

$$\alpha_{\Omega}^2 + \beta_{\Omega}^2 + \gamma_{\Omega}^2 = 1$$

STAR, PRL126, 162301 (2021)

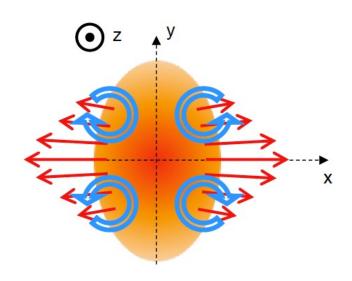

AMPT and hydro calculations capture the trend:

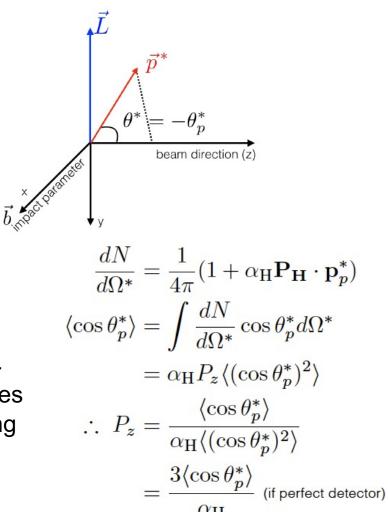

D.-X. Wei, W.-T. Deng, and X.-G. Huang, PRC99.014905 (2019)

\mathcal{E} , Ω global polarization with STAR BES-II

- First measurement of Ξ , Ω polarization with BES data, significant Ξ polarization observed, decrease trend with collision energy
- No significant difference between Λ and Ξ global polarization within uncertainties
- A hint of larger Ω polarization than Λ and Ξ in low energies

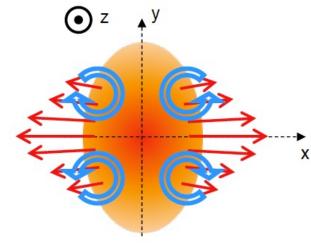
 $P_{\Omega} \approx 5/3P_{\Lambda}$ Model: H. Li et al Phys. Lett. B827, 136971 (2022)

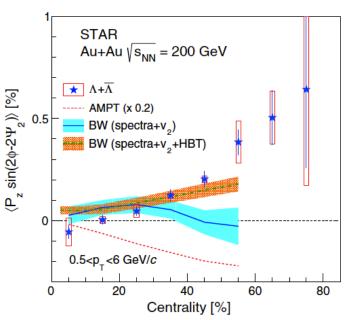


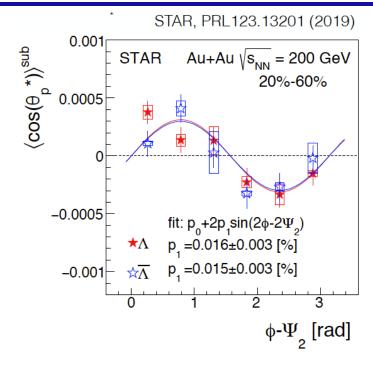

Polarization along the beam direction

"Local polarization"

- F. Becattini and I. Karpenko, PRL120.012302 (2018)
- S. Voloshin, SQM2017

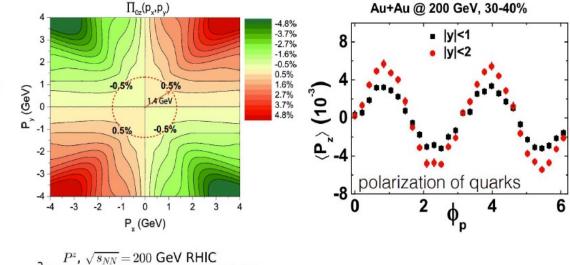



 Stronger flow in in-plane than in outof-plane, known as elliptic flow, makes local vorticity (thus polarization) along beam axis.



Polarization along the beam direction

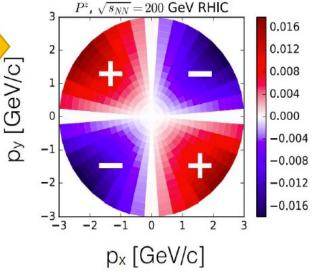
"Local polarization"

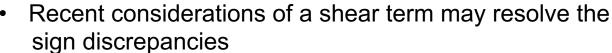


- Polarization along the beam direction expected from the "elliptic flow"
- STAR data indeed show such a longitudinal polarization Pz depending on azimuthal angle (sine function)
- Blast Wave model captures the trend with correct sign, while many others do not.

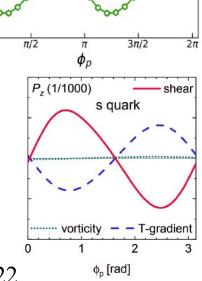
P_z : sign problem

- Some model studies predicted this behavior with the correct sign
 - (3+1)D PICR hydro.: Y. Xie, et. al., EPJ C 80, 39 (2020)
 - Chiral kinetic: Y. Sun, et. al., PRC 99, 011903(R) (2019)
- Others predicted the incorrect sign
 - UrQMD+hydro: F. Becattini, et. al., PRL.120.012302 (2018)
 - AMPT: X. Xia, et. al., PRC98.024905 (2018)



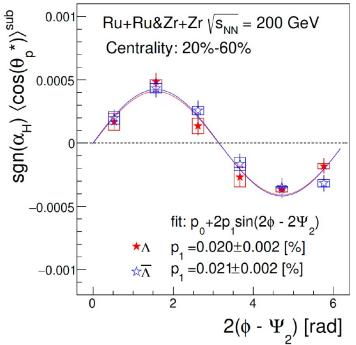

0.02

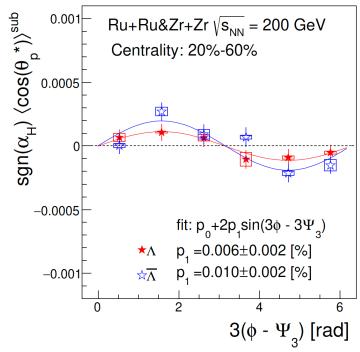
0.01


0.00 -0.01

-0.02

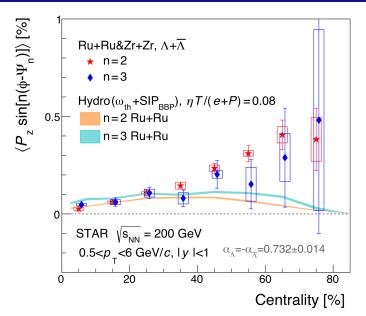
B. Fu et al., PRL 127 (2021) 14, 142301 F. Becattini et al., PRL 127, 272302 (2021)

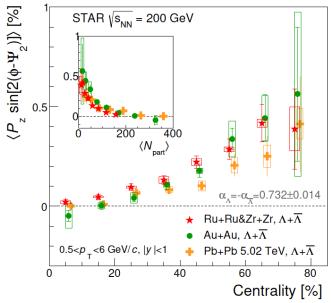



 $\langle P_z \rangle$

Λ polarization along the beam direction

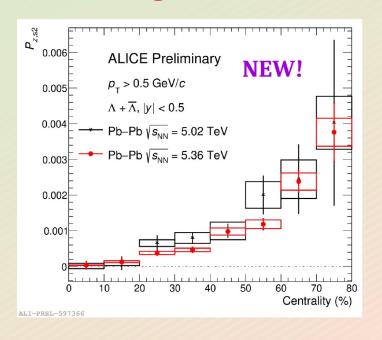
"Local polarization" in isobar collisions:

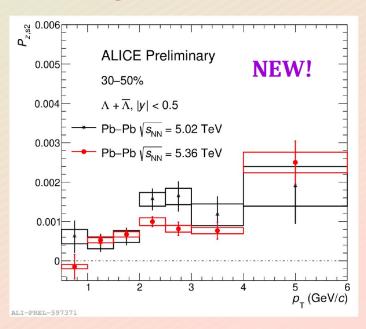




- First measurement relative to the 3^{rd} -order event plane Ψ_3
 - \triangleright Similar pattern to the 2nd-order, indicating v_3 -driven polarization

Local polarization in iso-bar collisions

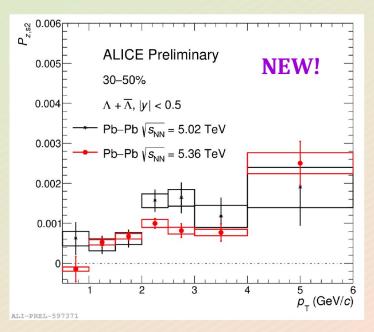

- Comparable 2^{nd} and 3^{rd} order sine coefficients of $P_{z,n}$, especially in most central events
- Hydrodynamic models with shear term reasonably describes the data for central collisions, but not for peripheral, Additional constraint on shear viscosity
- P(z,n) from Isobar data comparable to Au+Au and Pb+Pb
 - ✓ A hint of system size dependence rather than energy dependence

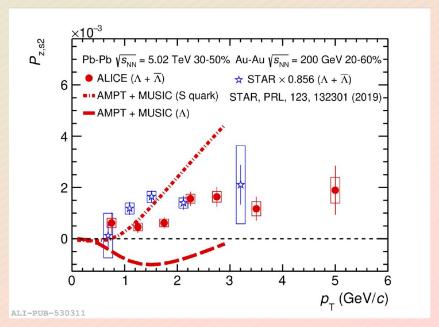

STAR, PRL131, 202301(2023)

New Results from ALICE on $\Lambda(\overline{\Lambda})$ local polarization

- Prottay Das @ SPIN2025

Longitudinal second order polarization of Λ




- \checkmark $P_{z,s2}$ increases from central to peripheral collisions due to increasing anisotropy
- \checkmark $P_{z,s2}$ increases mildly with p_T
- ✓ Run 3 results are compatible with Run 2 with much smaller statistical uncertainties due to x20 data sample

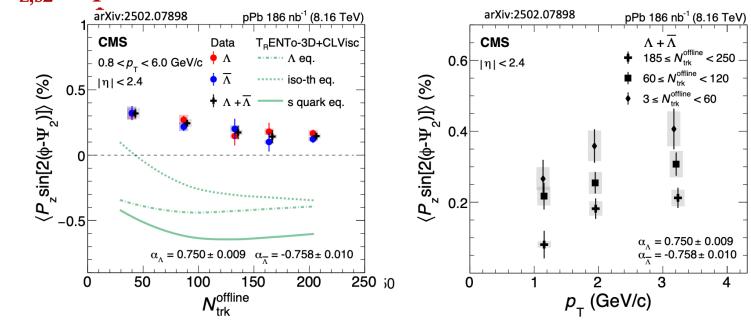
New Results from ALICE on $\Lambda(\overline{\Lambda})$ local polarization

- Prottay Das @ SPIN2025

Comparison with STAR energy and model predictions

ALICE Collaboration, Phys. Rev. Lett. 128, 172005 (2022)

- \checkmark $P_{z,s2}$ at the LHC is smaller in magnitude to top RHIC energy at low p_T
- ✓ 3+1 D hydro model MUSIC + AMPT initial conditions predicts correct sign polarization if shear-induced polarisation is included and the inherits quark s polarisation at the hadronisation stage


16

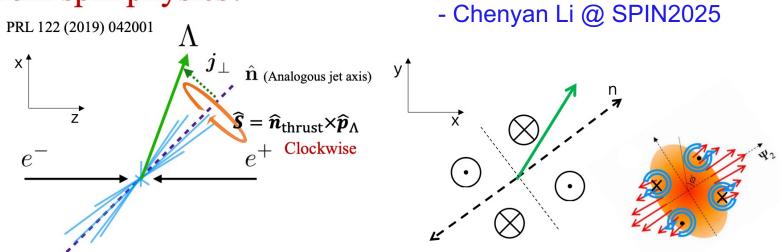
B.Fu et al., Phys. Rev. Lett. 127, 142301 (2021)

Longitudinal polarization in small system at CMS

- Chenyan Li @ SPIN2025

P_{z,s2} in pPb collisions

Significant positive $P_{z,s2}$ signal observed for the entire multiplicity range $P_{z,s2}$ values for Λ , $\overline{\Lambda}$ are consistent


 $P_{z,s2}$ decrease as function of multiplicity, increase as function of p_T

Hydro calculation is not consistent with data Not consistent with the trend of v2

Longitudinal polarization in small system at CMS

Is it from cold-QCD effect like polarizing fragmentation function?

Is it from spin physics?

Transverse polarization of Λ has been a long standing puzzle Recent Belle measurement in e⁺e⁻ shows a significant signal wrt thrust axis Projection into x-y plane introduce a P_z wrt thrust axis (n) Thrust axis coincide with 2^{nd} order event plane at low multiplicity Opposite direction than our signal; but could have a z_{Λ} dependence Diluted towards high multiplicity

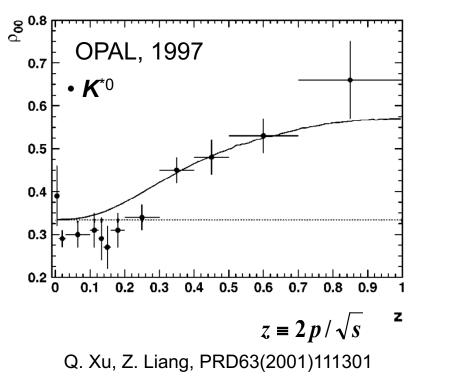
Spin polarization of vector meson

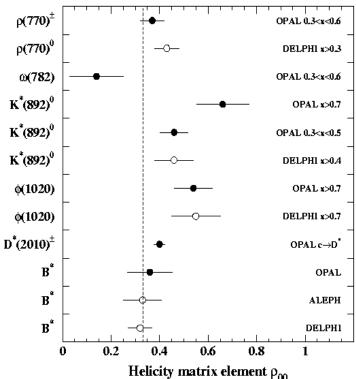
• Spin density matrix of a vector meson: $\rho = \begin{pmatrix} \rho_{11} & \rho_{10} & \rho_{1-1} \\ \rho_{01} & \rho_{00} & \rho_{0-1} \\ \rho_{-11} & \rho_{-10} & \rho_{-1-1} \end{pmatrix}$ $(\rho = \sum_{i} P_{i} \mid i >< i \mid)$

 ρ_{11} : the probability to be in h=1 state, similar for ρ_{-1-1} and ρ_{00} .

- · Spin polarization information of vector meson can be extracted via it decay
 - For $V \rightarrow M_1 + M_2$, M_1 and M_2 are two pseudo-scalar mesons,

$$\mathbf{W(cos}^*) = \frac{3}{4} [(1 - \rho_{00}) + (3\rho_{00} - 1) \cos^2 \theta^*]$$


"Spin alignment", J.F. Donoghue, PRD19, 1979.


Θ*: angle between decay daughter M and the quantization axis in rest frame of V

Spin alignment of vector meson in e⁺e⁻

• Spin alignment:
$$\mathbf{W}(\cos\theta) = \frac{3}{4}[(1-\rho_{00}) + (3\rho_{00}-1)\cos^2\theta^*]$$

Lot of spin alignment data at LEP (e⁺e⁻ at 90GeV):

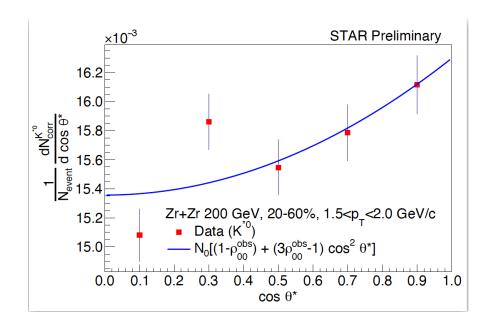
Global spin alignment measurement in A+A collisions?

Z. T. Liang, X.N. Wang, Phys.Lett.B629, (2005)

Global spin alignment in heavy ion

Spin alignment of φ, K* meson in Au+Au collision at STAR:

Yield of ϕ , K* is corrected for efficiency and acceptance using STAR embedding simulations, then fitted with decay angle distribution:

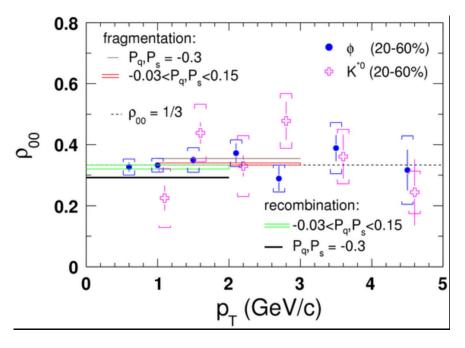

• Observed ρ_{00}^{obs} is calculated from fitting the yield with function:

$$\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[(1 - \rho_{00}^{obs}) + (3\rho_{00}^{obs} - 1)\cos^2\theta^*) \right]$$

• Observed ρ_{00}^{obs} is corrected for TPC event plane resolution (R)

$$\rho_{00} - \frac{1}{3} = \frac{4}{1 + 3R} (\rho_{00}^{\text{obs}} - \frac{1}{3})$$

Tang et. al., Phys. Rev. C 98, 044907 (2018)




1st STAR paper on spin alignment

Spin alignment measurements of the $K^{*0}(892)$ and $\phi(1020)$ vector mesons in heavy ion collisions at $\sqrt{s_{NN}}=200$ GeV

B. I. Abelev *et al.* (STAR Collaboration) Phys. Rev. C **77**, 061902(R) – Published 12 June 2008

J.H. Chen, Z.B. Tang et. al.

w.r.t. reaction plane

w.r.t. production plane

Global spin alignment in heavy ion collision

Vector mesons' ρ_{00} from Au+Au at STAR BES-I:

STAR, Nature **614**, 244 (2023)

Z. T. Liang, X.N. Wang, Phys.Lett.B629, (2005)

0.4

0.35

Open: Pb+Pb (10-50%)

Au+Au (20-60%)

$$\star$$
 ϕ (lyl < 1.0 & 1.2 < p_T < 5.4 GeV/c)

 κ^{*0} (lyl < 1.0 & 1.0 < p_T < 5.0 GeV/c)

 $C_s^{(y)} = 1109 \pm 143 \text{ fm}^8$

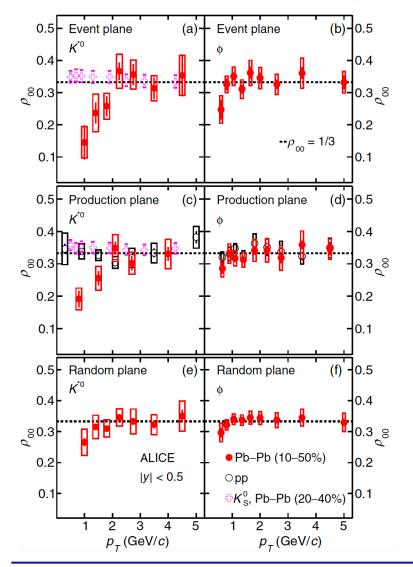
10

 10^2
 $\sqrt{S_{NN}}$ (GeV)

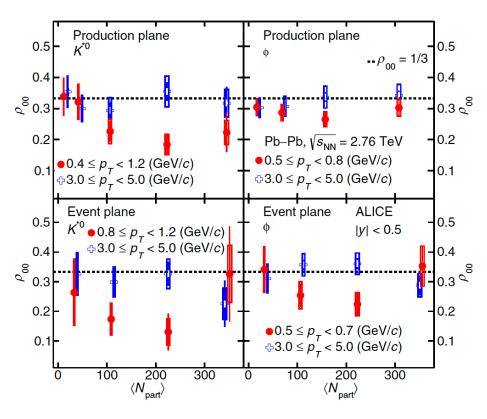
$$\begin{array}{c} \text{for } q_{1}^{\uparrow}+\overline{q}_{2}^{\uparrow} \rightarrow \textit{V} \\ \\ \rho_{00}^{\textit{V}}=\frac{1-\left\langle P_{q}P_{\overline{q}}\right\rangle}{3+\left\langle P_{q}P_{\overline{q}}\right\rangle} \neq \frac{1-\left\langle P_{q}\right\rangle\langle P_{\overline{q}}\right\rangle}{3+\left\langle P_{q}\right\rangle\langle P_{\overline{q}}\right\rangle} \end{array}$$

two folded average
$$\langle P_q P_{\overline{q}} \rangle = \left\langle \langle P_q P_{\overline{q}} \rangle_V \right\rangle_S$$
 inside the meson V over the system S

J.P. Lv, Z.H. Yu, Z.T. Liang, Q. Wang, X.N. Wang, PRD 109, 114003 (2024)

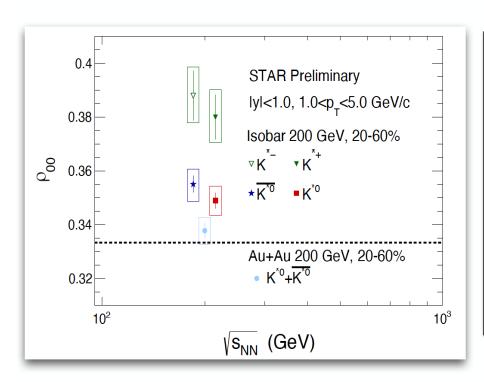

STAR Data indicate: $\langle P_q P_{\overline{q}} \rangle \neq \langle P_q \rangle \langle P_{\overline{q}} \rangle$ simply means correlation!

- Polarization by a strong force field of vector meson
 - X. Sheng, L. Oliva, and Q. Wang, PRD101.096005(2020)
 - X. Sheng, Q.Wang, and X. Wang, PRD102.056013 (2020)


Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions

ALICE, PRL125, 012301 (2020)

S. Acharya *et al.* (The ALICE Collaboration)



ho ho_{00} are found to be <1/3 at low ho_T <2 GeV for K*0 and ϕ in Pb-Pb at 2.76 TeV

$K^* \rho_{00}$ from Isobar collisions

- K*+/-: First measurement of global ρ₀₀
- K^{*0} vs. $K^{*+/-}$: ~ 2.5 σ difference
- Ordering opposite to the expectation from **B** field [Yang, et. al., Phys Rev C 97, 034917 (2018)]
- Effects from vector meson strong force field?

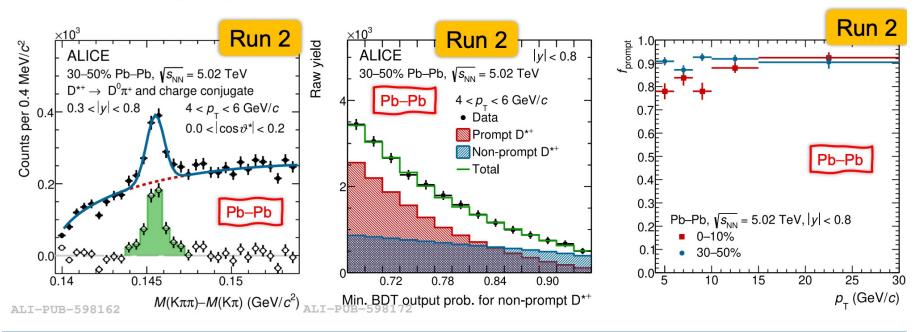
Need inputs from theory to understand this behavior

Subhash Singha @ QM 2022

19

Spin alignment becomes a new hot topic in heavy ion physics!

D* spin alignment at ALICE


- Mingze Li @ SPIN2025

D*+ yield extraction

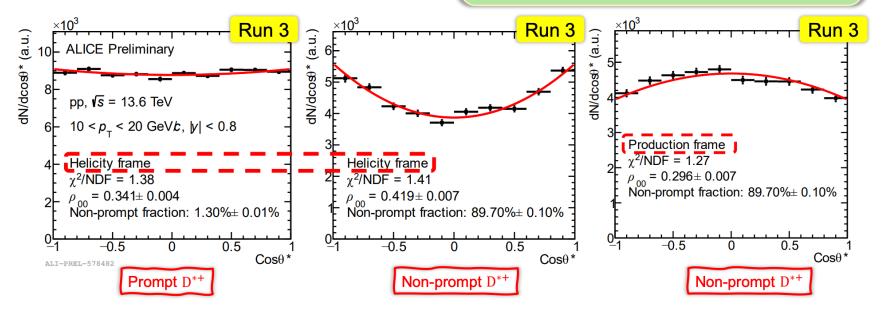
For D*+ analysis in pp and Pb-Pb collisions,
Boosted Decision Trees (BDT) with 3-class (prompt,
non-prompt, background) classification are used to:

- > Reduce the combinatorial background
- > Separate prompt and non-prompt charm hadrons

Mingze.li@cern.ch | CCNU | SPIN 2025

15/27

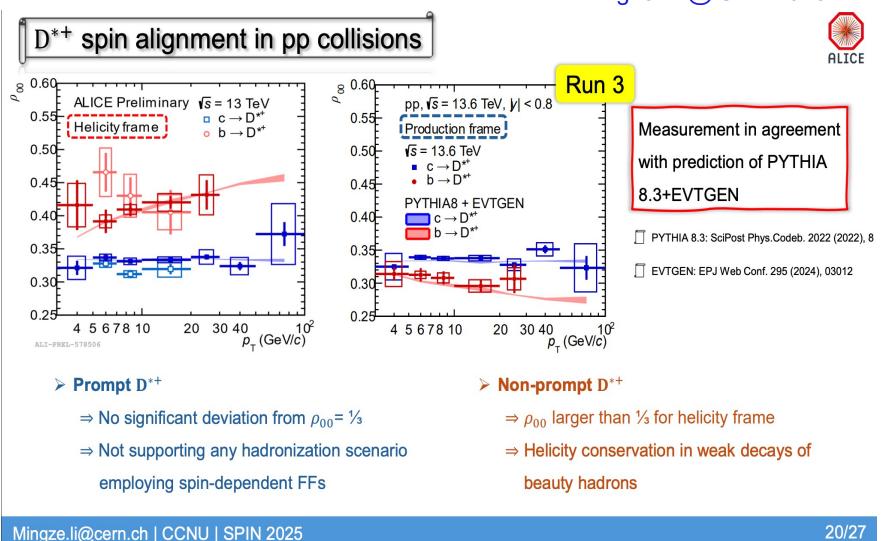
D* spin alignment at ALICE


- Mingze Li @ SPIN2025

ho_{00} extraction

- > Helicity: Direction of vector meson momentum
- Production: Direction perpendicular to vector meson momentum and beam axis

Spin alignment:
$$\frac{dN}{d\cos\theta^*} = N_0[(1-\rho_{00}) + (3\rho_{00}-1)\cos^2\theta^*]$$



Mingze.li@cern.ch | CCNU | SPIN 2025

16/27

D* spin alignment in pp at ALICE

- Mingze Li @ SPIN2025

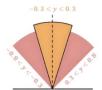
D* spin alignment in Pb+Pb at ALICE

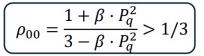
- Mingze Li @ SPIN2025

D*+ spin alignment in Pb-Pb collisions

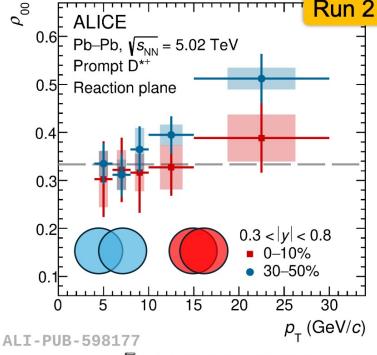
First measurement of D*+ spin alignment with respect to the reaction plane in Pb-Pb collisions

Extracted ρ_{00} parameter for prompt \mathbf{D}^{*+}


- ➤ In less central rapidity regions 0.3 < |y| < 0.8
 - ☐ Central collisions (0-10%):

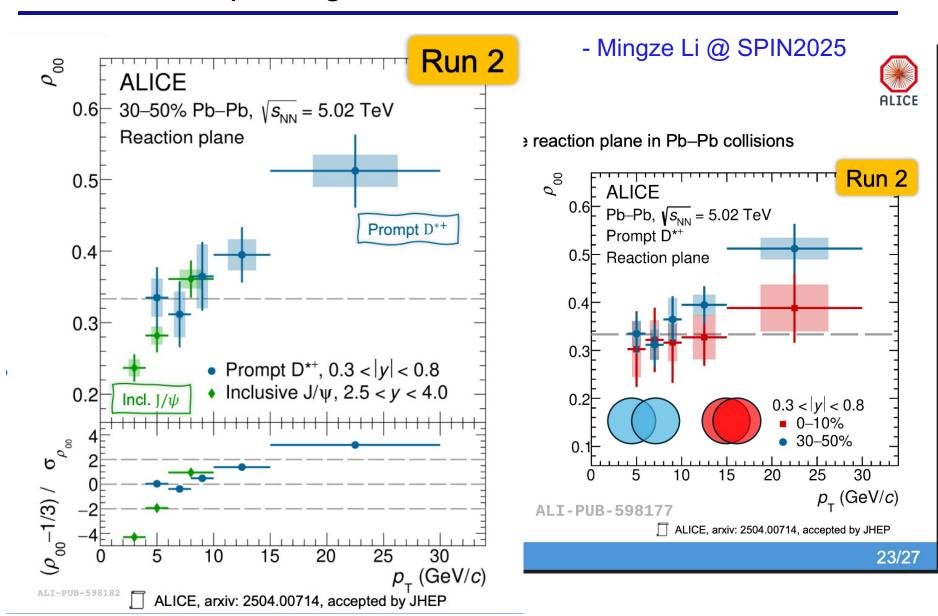

Consistent with $\rho_{00} = \frac{1}{3}$

□ Non-central collisions (30-50%):


Evidence of ρ_{00} larger than $\frac{1}{3}$ at high $p_{\rm T}$

⇒ Consistent with the scenario of polarized charm quarks hadronizing via fragmentation

Liang et al, Physics Letters B 629 (2005) 20-26



ALICE, arxiv: 2504.00714, accepted by JHEP

Mingze.li@cern.ch | CCNU | SPIN 2025

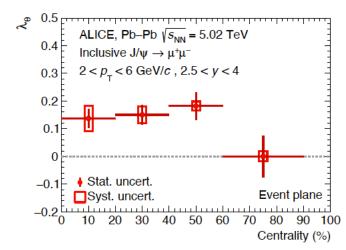
23/27

D* spin alignment in Pb+Pb at ALICE

Global spin alignment of J/ψ

J/ψ production mechanism:

1/ψ 介子

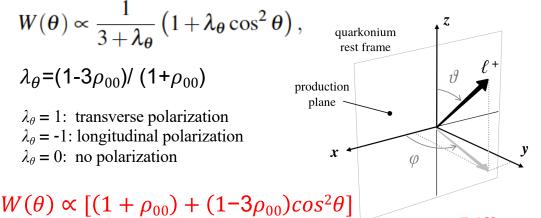

再产生效应 — QGP中 — 能量依赖性

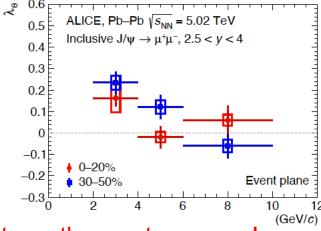
硬散射产生 — 碰撞早期 — 强磁场

ϕ 介子

再产生效应 — QGP中

ALICE, PRL131 (2023) 042303



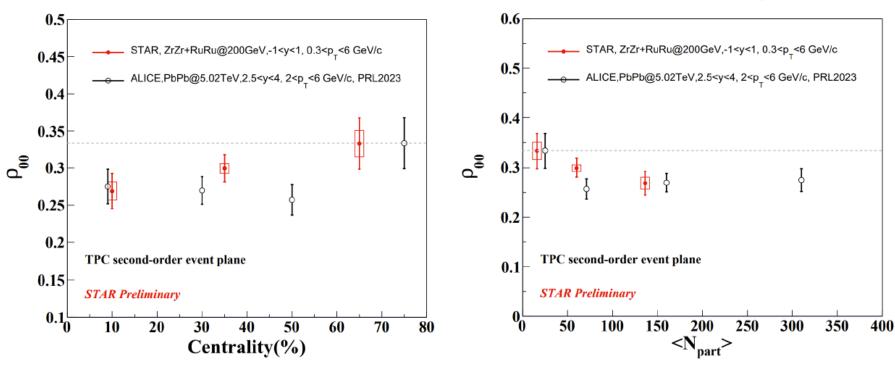

• J/ψ spin alignment determination, along angular momentum direction

Decay channel: $J/\psi \rightarrow e^+e^-$

$$W(\theta) \propto \frac{1}{3 + \lambda_{\theta}} \left(1 + \lambda_{\theta} \cos^2 \theta \right),$$

 $\lambda_{\theta} = (1-3\rho_{00})/(1+\rho_{00})$
 $\lambda_{\theta} = 1$: transverse polarization

 λ_{θ} = -1: longitudinal polarization $\lambda_{\theta} = 0$: no polarization



->Different as other vector meson!

P. Faccioli et al., Eur. Phys. J. C (2010) 69: 657

J/ψ global spin alignment in iso-bar at STAR

- Dandan Shen @ SPIN2023

The ρ_{00} at RHIC energy is comparable to LHC results, despite of very different collision energy, systems and rapidity

09/26/2023

Dandan Shen @ SPIN 2023

19

Spin observables probing quark spin quantities

 Complete list of spin observables in A+A collisions, including spin correlations of hyperon pair production!

Hadron	Measurables	Sensitive quantities
Spin 1/2	Hyperon polarization P_H	average quark polarization $\langle P_q \rangle$
(hyperon <i>H</i>)	Hyperon spin correlation $c_{H_1H_2}, c_{H_1\overline{H}_2}$	long range spin correlations $c_{qq},c_{q\overline{q}}$
Spin 1	Spin alignment $ ho_{00}$	local spin correlations $c_{q\overline{q}}$
(Vector mesons)	Off diagonal elements $ ho_{m'm}$	local spin correlations $c_{q\overline{q}}$
Spin 3/2	Hyperon polarization P_{H^*} or S_L	average quark polarization $\langle P_q \rangle$
$J^P = \left(\frac{3}{2}\right)^+ \text{baryons}$	Rank 2 tensor polarization S_{LL}	local spin correlations c_{qq}
2)	Rank 3 tensor polarization S_{LLL}	local spin correlations c_{qqq}

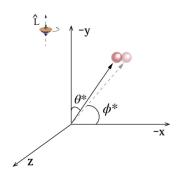
Z. Zhang, J.P. Lv, Z.H. Yu, and Z.T. Liang, arXiv: 2406.03840

Systematic studies of quark spin correlations in QGP!

Lambda-(anti)Lambda spin-spin correlation

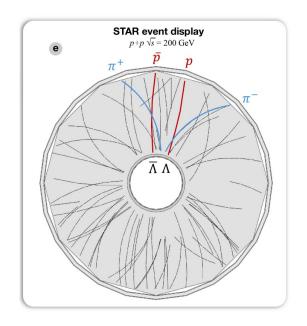
Angular distribution of Lambda-(anti)Lambda pair production in pp/AA:

$$\begin{split} \frac{dN}{d\cos\theta_i^* d\cos\theta_j^*} &= f_{\uparrow\uparrow} \frac{dN_{\uparrow\uparrow}}{d\cos\theta_i^* d\cos\theta_j^*} + f_{\downarrow\downarrow} \frac{dN_{\downarrow\downarrow}}{d\cos\theta_i^* d\cos\theta_j^*} + f_{\uparrow\downarrow} \frac{dN_{\uparrow\downarrow}}{d\cos\theta_i^* d\cos\theta_j^*} + f_{\downarrow\uparrow} \frac{dN_{\uparrow\downarrow}}{d\cos\theta_i^* d\cos\theta_j^*} \\ &= \frac{1}{4} \left[1 + A\alpha_{\Lambda}\cos\theta_i^* + B\alpha_{\Lambda}\cos\theta_j^* + C\alpha_{\Lambda}^2\cos\theta_i^* \cos\theta_j^* \right], \end{split}$$


 θ_{i}^{*} : angle between decayed (anti)proton *i* and spin direction in each hyperon's rest frame

In particular for global polarization in heavy ion collision:

$$c'_{\Lambda\Lambda} = rac{9}{lpha_{\Lambda}^2} \langle \cos heta_i^* \cos heta_j^*
angle - P_{\Lambda}^2. \quad {\sf Or} \quad c'_{\Lambda\Lambda} = rac{64}{\pi^2 lpha_{\Lambda}^2} \langle \sin\Delta\phi_i^* \sin\Delta\phi_j^*
angle - P_{\Lambda}^2,$$


 P_{Λ} : hyperon global polarization along reaction plane $\Delta \Phi^*$: azimuthal angle of decay proton relative to the reaction plane

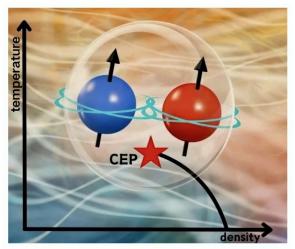
- D.Y. Shen, J.H. Chen, A.H. Tang, arXiv:2407.21291
- H.C Zhang, S.Y. Wei, Phys.Lett.B 839 (2023) 137821

Lambda-Lambda spin-spin correlation in pp

Lambda-(anti)Lambda spin correlation in pp at 200GeV at STAR:

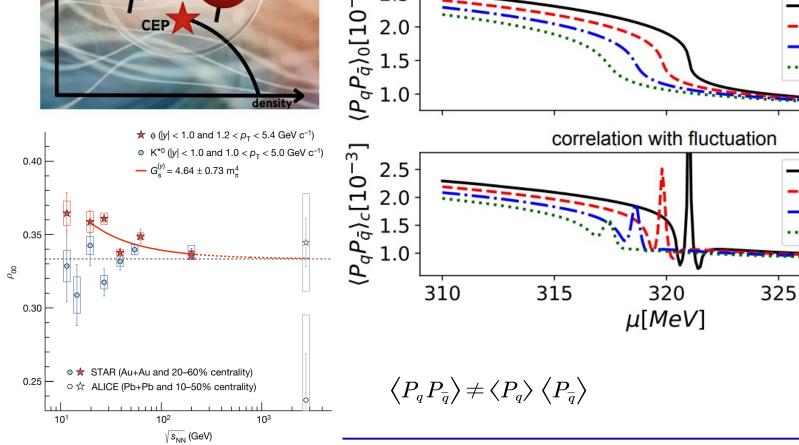
STAR, arXiv:2506.05499 $|\Delta y| < 0.5$, $0.5 < |\Delta y| < 2.0$ STAR $|\Delta \phi| < \pi/3$ or $|\Delta \phi| > \pi/3$ $p+p \sqrt{s} = 200 \text{ GeV}$ $K_s^0 K_s^0$ |v| < 1 $\langle p_{_{\rm T,A}} \rangle = 1.35 \text{ GeV/}c$ $DCA_{\Lambda} < 1 \text{ cm}$ $\overline{\Lambda\Lambda}$ $\Lambda\Lambda$ Data $\Lambda \overline{\Lambda}$ PYTHIA 8.3

• Spin correlation $C_{\Lambda_1\Lambda_2}^S(P_{\Lambda_1\Lambda_2})$ can be determined as:


$$\frac{1}{N} \frac{dN}{d \cos \theta_{1,2}^*} = \frac{1}{2} [1 + \alpha_1 \alpha_2 C_{\Lambda_1 \Lambda_2}^s \cos \theta_{1,2}^*]$$

 $\theta_{1,2}^*$ is the angle between the momentum of the protons, each boosted to the rest frame of their parent particle

- \triangleright A nonzero spin correlation is observed in $\Lambda\overline{\Lambda}$ pairs
- ➤ How about heavy ion collisions? Data analysis at STAR is ongoing

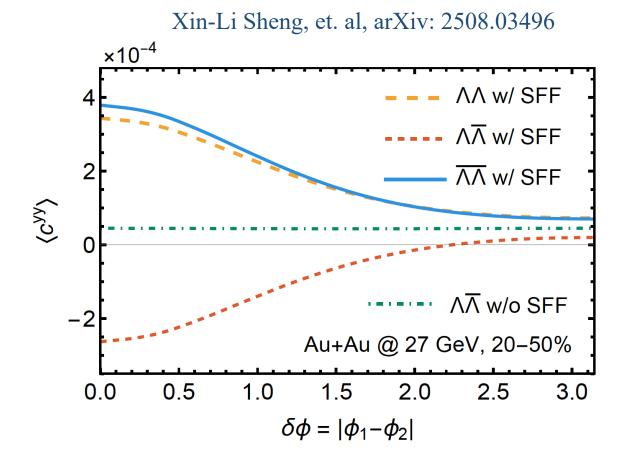

Lambda-Lambda spin-spin correlation & CEP

Hyperon spin correlation could be sensitive to the CEP in the QCD phase

Hao-Lei Chen, et. al, PRL 135. 032302 (2025)

correlation without fluctuation

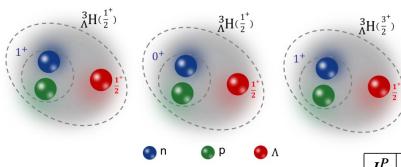
330


T = 83 MeV

T = 84 MeV T = 85 MeVT = 86 MeV

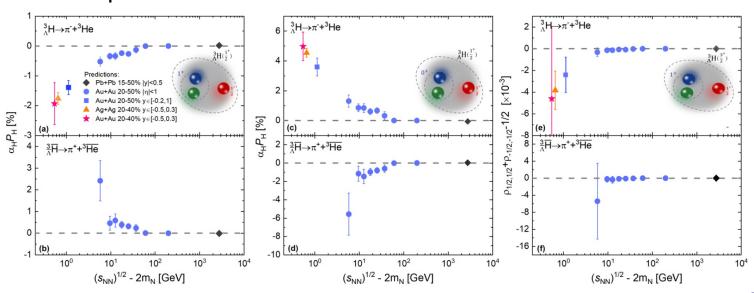
T = 83 MeV T = 84 MeV T = 85 MeVT = 86 MeV

Lambda-Lambda spin-spin correlation in AA


• Different spin correlation behaviors of $\Lambda\Lambda$ and $\Lambda\overline{\Lambda}$ pairs are predicted by theoretical model

Global polarization of hyper-nuclei in AA collision

Possible spin structure of hypertriton:


- K.J. Sun et. al. PRL134 (2025), 022301

$$^3_{\Lambda} \text{H} \rightarrow \pi^- + ^3_{} \text{He}$$

- Angular distribution via hypertriton decay:
- Polarization predictions:

J^P	structure	decay mode	$\frac{dN}{d\cos\theta^*}$
$\frac{1}{2}$	$\Lambda(\frac{1}{2}^+) - np(1^+)$	$^3_{\Lambda} \mathrm{H} \rightarrow \pi^- + ^3 \mathrm{He}$	$\frac{1}{2}(1-\frac{1}{2.58}\alpha_{\Lambda}\mathcal{P}_{\Lambda}\cos\theta^*)$
$\left[\frac{1}{2}\right]^+$	$\Lambda(\frac{1}{2}^+)-np(0^+)$	$\frac{3}{\Lambda}$ H $\rightarrow \pi^- + ^3$ He	$\frac{1}{2}(1+\alpha_{\Lambda}\mathcal{P}_{\Lambda}\cos\theta^*)$
$\frac{3}{2}$	$\Lambda(\frac{1}{2}^+) - np(1^+)$	$^{3}_{\Lambda}\text{H} \rightarrow \pi^{-} + ^{3}\text{He}$	$\frac{1}{2}\left(1-\mathcal{P}^2_{\Lambda}(3\cos^2\theta^*-1)\right)$

Summary

- Exciting spin measurements in heavy ion collisions
 - Polarization to study QCD medium property in heavy ion collisions
 - √ hyperon global polarization
 - √ hyperon local polarization
 - ✓ Vector meson spin alignment
 - ✓ Di-hadron spin correlation
 - Polarization measurements to study QCD effect in pp
 - ✓ hyperon polarization relative to reaction plane
 - ✓ Vector meson spin alignment