Update on the cosmic muon background simulation for a 10-kg LMO prototype experiment

> Long Ma, Wei Chen, jinhui Chen 2020.06.12

Muon background simulation

- CJPL muon spectrum simulated based on parametric formula (lack of information on the profile of Jinping mountain)
- Generation of MC muon events according to energy spectrum and spatial azimuthal distribution
- Geant4 simulation using QGSP_BERT_HP physics list (comparisons are made with livermore_EM)

G4 Setup

CJPL cavern radius: 6 m Muon energy: 1-10000GeV Crystal size: 4.5 x 4.5 x 4.5 cm³ Crystal material: LMO Detector: 4 x 9 array

Shield	Thickness	Height
Lateral Copper	120mm	1200mm
Lateral Lead	100mm	1500mm
Lateral PE	150mm	1500mm
Top Copper	120mm	120mm
DR Vessels (3x)	2mm	600mm

Parameterization of the muon spectrum

Cosmic muon flux in underground lab:

$$I_{\text{tot}} = \int \sin(\theta) d\theta \int d\phi I(h(\theta, \phi)) G(h, \theta),$$

Differential flux of cosmic muons based on semi-sphere approximation (h0 is the thickness of rock in equivalent water unit km.w.e)

$$I_{\rm th}(h,\theta) = (I_1 e^{(-h_0/\lambda_1)} + I_2 e^{(-h_0/\lambda_2)}) \operatorname{sec}(\theta).$$

$$I_1 = (8.60 \pm 0.53) \times 10^{-6} \text{sec}^{-1} \text{ cm}^{-2} \text{ sr}^{-1}$$

$$I_2 = (0.44 \pm 0.06) \times 10^{-6} \text{sec}^{-1} \text{ cm}^{-2} \text{ sr}^{-1}$$

$$\lambda_1 = 0.45 \pm 0.01 \text{ km.w.e.} \quad \lambda_2 = 0.87 \pm 0.02 \text{ km.w.e.}$$

PHYSICAL REVIEW D 73, 053004 (2006)

Parameterization of the muon spectrum

Direct cosmic muon background contribution

Discussion

• Considerable muon BG contribution

• Muon induced BG (cosmogenic radioactive isotopes) need to be studied particularly

 Finalized the study by including the gamma/ neutron results