

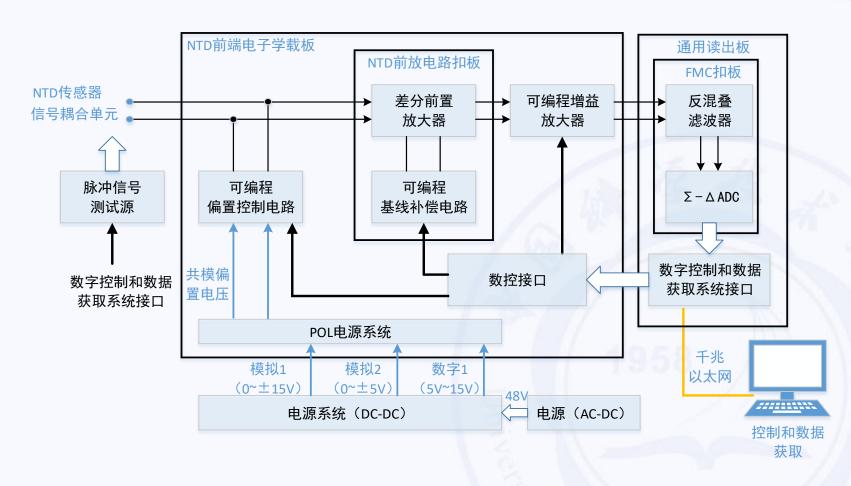



## 低温微量热器读出电子学系统 2020年研究进展报告


中国科学技术大学近代物理系 核探测与核电子学国家重点实验室 杨俊峰 汪洪潮 张雷 李毅 2020/12/28



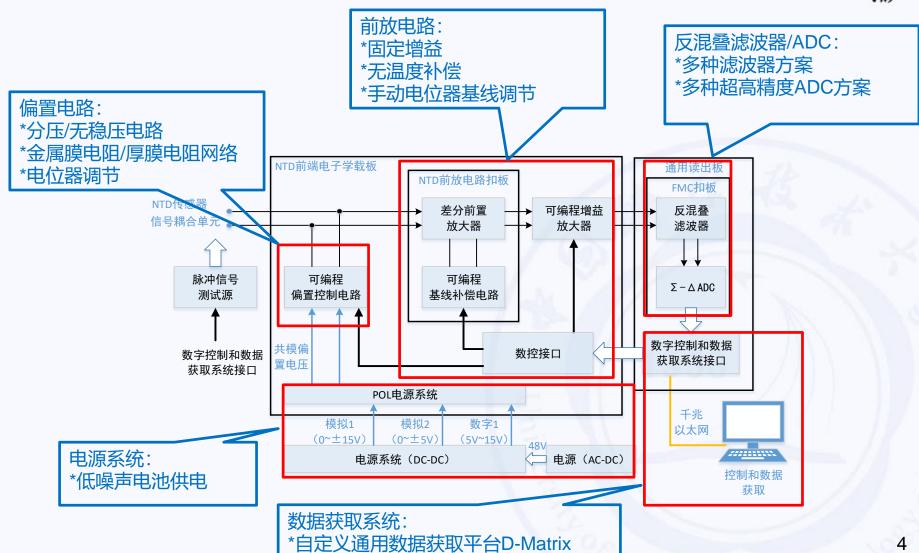



## 报告提纲

- ▶ 低温微量热器读出电子学系统简况
- ▶ 2020年工作进展
- ▶ 下一步工作计划

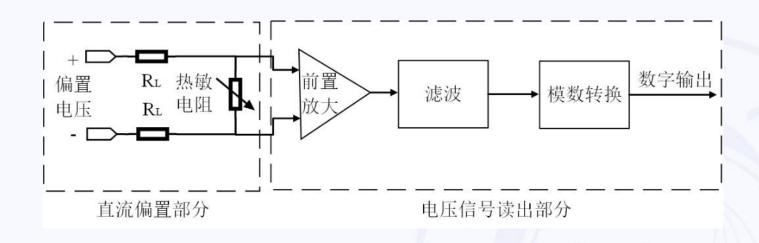


## 但青文品


## 读出电子学系统框图






## 理實文學

## 电子学系统研究技术路线





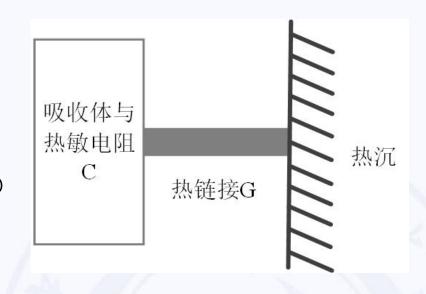
## 简化电子学系统框图

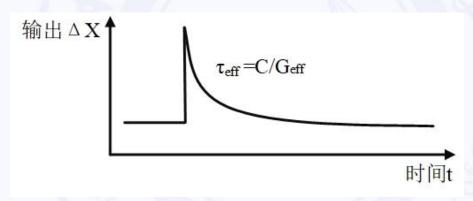




## 理賣主部

### 影响到性能的关键因素:信号特征


▶ 微量热器的响应函数


$$S(\omega) = \frac{\Delta X(\omega)}{W(\omega)} = \frac{1}{G_{eff}} \frac{1}{1 + j\omega\tau_{eff}} \frac{X\alpha A_{tr}}{T}$$

- ▶ 低通系统(信号频率<100 Hz)
- ⇒ 合适的电子学系统带宽
- > 对冲激信号响应

$$- X(t) = \frac{X\alpha A_{tr}}{TG_{eff}\tau_{eff}} W e^{-\frac{t}{\tau_{eff}}}$$

- ▶ 精确测量波形的幅值
- ⇒良好的幅频、相频特性







## 但實立學

### 影响到性能的关键因素: 噪声

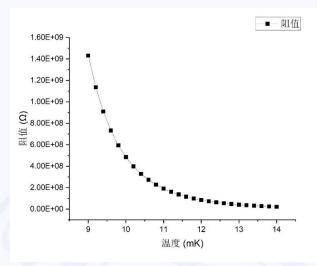
- ▶ 吸收体热力学噪声(Thermodynamic Fluctuation Noise,TFN)
- $p_{TFN}^2 = 4k_B T_s^2 G_0 F_{link}(t, \beta) \Rightarrow$  难以抑制
- ➤ 热敏电阻热噪声(Johnson Noise)

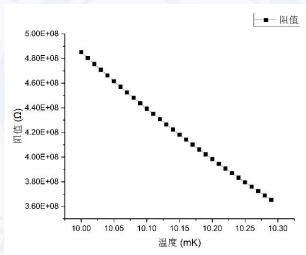
$$- p_{nJ}^2(\omega) = \frac{4k_B T R_D P (1 + \omega^2 \tau^2)}{L_0^2} \Rightarrow 难以抑制$$

▶ 负载电阻热噪声(Load Resistor Johnson Noise)

- 
$$p_{nJ-load}^2 = 4k_B T_L P \frac{R_D}{R_L} \frac{(1+L_0)^2 + \omega^2 \tau^2}{L_0^2}$$
 ⇒ 选择较大的负载电阻

➤ 读出电路噪声(Amplifier Noise)


$$- p_{n-AMP}^2 = \frac{e_{n-AMP}^2 I^2 (1+\omega^2 \tau^2)}{L_0^2 K_L^2 K_F^2} + \frac{i_{n-AMP}^2 RP [(1+L_0^2)+\omega^2 \tau^2]}{L_0^2} \Rightarrow 尽量抑制$$




## 理實主都但專至追

### 影响到性能的关键因素: 传感器特征

- ➤ 中子核嬗变掺杂锗传感器(NTD)
  - ▶ 极低的工作温度:约10 mK
- $R(10 \ mK) = 4.8 \times 10^8 \Omega$ 
  - ightharpoonup 足够大的负载电阻( $10G\Omega$ 量级)
- ➤ 典型偏置电流(0.05 nA)
  - ▶ 极小的放大电路输入电流 (<1 pA)
- ➤ 量热器增益: 约2 mV/MeV量级 (10 mK)
  - ▶ 足够低的RMS噪声(<8.5 μVrms)
- ➤ 输出最大电压:约6 mV
  - ▶ 合适的放大倍数和输入电压范围









## 关键技术

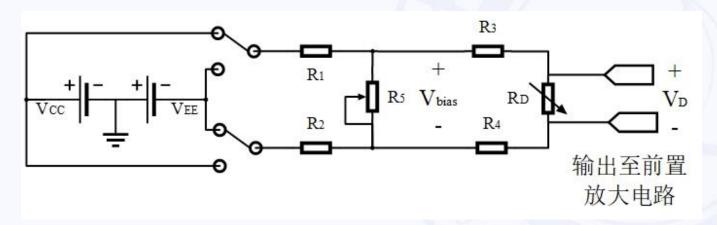
- ▶超低噪声、低漂移、可调节的精密直流偏置电路设计
- ▶超低噪声、超大输入阻抗、超低漏电流的高性 能前置放大电路设计
- ▶低噪声、线性相位抗混叠滤波器和高精度模数 转换电路设计





## 报告提纲

- ▶ 低温微量热器读出电子学系统简况
- ▶ 2020年工作进展
- ▶ 下一步工作计划






## 直流偏置电路

#### ▶特征:

- 可调的偏置电压:金属膜/厚膜电阻网络,电位器调节
- -极低噪声的电压源: 12V锂电池
- 极大阻值(GΩ量级)、低容差、低温漂的负载电阻: 厚膜电阻







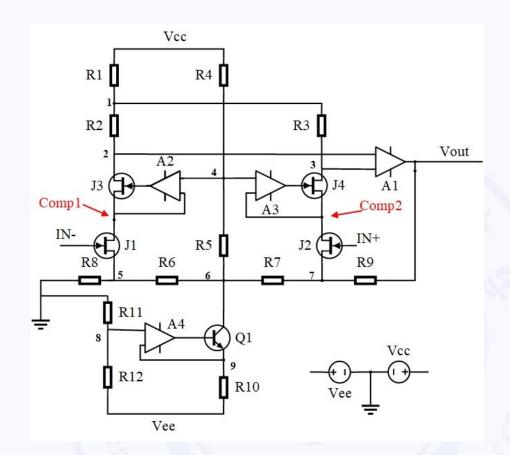
## 前置放大电路

#### ▶输入级:

| JFET型号 | Idss  | 最大Igs   | 最大Ugs(off) | 噪声系数                              |
|--------|-------|---------|------------|-----------------------------------|
| 2N6451 | 50 mA | -0.1 nA | -3.5 V     | 5 nV/√Hz                          |
| IF3601 | 30 mA | -0.1 nA | -2 V       | $0.3 \text{ nV}/\sqrt{\text{Hz}}$ |
| IF9030 | 30 mA | -0.1 nA | -2 V       | $0.5 \text{ nV}/\sqrt{\text{Hz}}$ |
| 2sk146 | 30 mA | 未注明     | -0.7 V     | 未注明                               |

#### 2sk146型JFET

在反偏电压为1V,温度为270K时, Igs ≈ 10 fA 在反偏电压为1V,温度为300K时, Igs ≈ 60 fA 在反偏电压为2V,温度为300K时, Igs ≈ 80 fA






## 前置放大电路

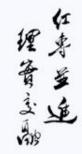
#### ▶ 放大电路

- JFET反偏电压: -1.5 V
- 输入电流: < 0.1 pA
- 放大倍数: ≈ 217
- 输出电压范围: ±12 V
- 共模抑制比: >83.5 dB
- 输入等效RMS噪声:
  - ▶ 92 nV<sub>RMS</sub> @1 kHz
  - $\triangleright$  200  $nV_{RMS}$  @5 kHz
  - $ightharpoonup 280 \, nV_{RMS} @ 10 \, \text{kHz}$








## 抗混叠滤波器

#### ▶基于集成滤波器芯片

| 生产厂商                 | 芯片型号      | 上限截止频率<br>f <sub>H</sub> 范围 | 禁带衰减                     | RMS噪声电平<br>(±2.5V供电) |
|----------------------|-----------|-----------------------------|--------------------------|----------------------|
| Linear<br>Technology | LTC1064-3 | 最大95 kHz                    | -12.7 dB@2f <sub>H</sub> | 45 μVrms             |

- ▶分立器件8阶模拟贝塞尔滤波器
  - Sallen Key型八阶滤波电路
  - MFB型八阶全差分滤波电路





## 高精度模数转换电路

| 生产厂家                | 芯片型号                | 最高采样<br>频率 | 量化位数    | 通道数 | 积分非线性   | RMS噪声<br>(1 kSPS, 5 V) |
|---------------------|---------------------|------------|---------|-----|---------|------------------------|
| Analog<br>Devices   | AD7177-2            | 10 kSPS    | 32 bits | 4   | 1 ppm   | 0.77 μVrms             |
| Analog<br>Devices   | AD7779              | 16 kSPS    | 24 bits | 8   | 7 ppm   | 1.33 μVrms             |
| Texas<br>Instrument | ADS1262<br>/ADS1263 | 38 kSPS    | 32 bits | 8   | 3 ppm   | 1.74 μVrms             |
| Texas<br>Instrument | ADS1281             | 4 kSPS     | 32 bits | 2   | 0.6 ppm | 2.23 μVrms             |
| Texas<br>Instrument | ADS1282             | 4 kSPS     | 32 bits | 4   | 0.5 ppm | 2.23 μVrms             |



# 但等主题

## 实现电路



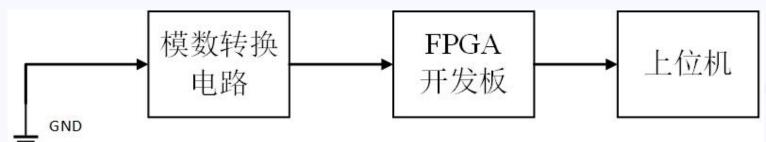


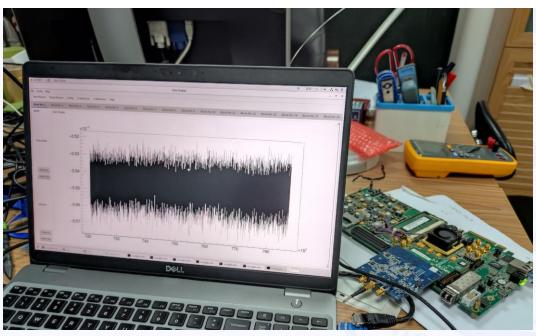
直流偏置电路与前置放大电路板





基于ADS1262的数字读出电路板





基于AD7177 - 2的数字读出电路板



### 电路测试与结论

#### ▶ 模数转换电路测试









## 模数转换电路测试结果

#### ▶ 基于ADS1262的模数转换电路

| 采样频率      | RMS噪声(标称值)              | 信噪比SNR    | 有效位数ENOB   |
|-----------|-------------------------|-----------|------------|
| 7.2 kSPS  | 7.28 μVrms (5.33 μVrms) | 116.74 dB | 19.38 bits |
| 14.4 kSPS | 8.40 μVrms (6.38 μVrms) | 115.50 dB | 19.19 bits |

#### ▶基于AD7177 - 2的模数转换电路

| 采样频率     | RMS噪声(标称值)                      | 信噪比SNR    | 有效位数ENOB   |
|----------|---------------------------------|-----------|------------|
| 2.5 kSPS | $1.39 \mu Vrms  (1.2 \mu Vrms)$ | 131.11 dB | 21.78 bits |
| 5 kSPS   | 1.99 μVrms (1.7 μVrms)          | 127.00 dB | 21.26 bits |
| 10 kSPS  | 2.91 μVrms (2.5 μVrms)          | 124.69 dB | 20.71 bits |





## 抗混叠滤波电路测试

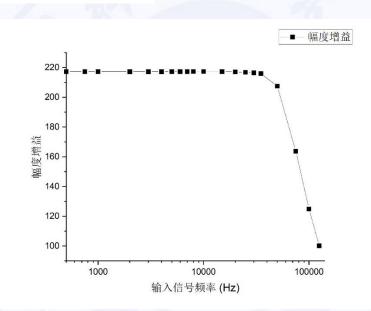
#### 抗混叠滤波电路频率响应测试框图



#### 抗混叠滤波电路性能对比

| 滤波电路种类          | RMS噪声             | 信噪比SNR   | 禁带衰减(2倍f <sub>H</sub> ) |
|-----------------|-------------------|----------|-------------------------|
| 集成滤波电路          | 701110 1125 (1) 1 |          | -12 dB                  |
| Sallen-Key型滤波电路 |                   |          | -14.2 dB                |
| MFB型滤波电路        | 62.49 μVrms       | 98.06 dB | -13.78 dB               |



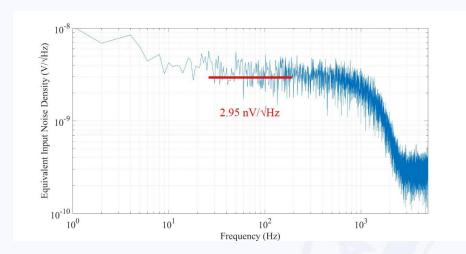



## 前置放大电路测试

▶ 幅频响应测试框图



- ▶ 幅频响应测试结果
  - 增益: 218 倍
  - 5 kHz以内增益变化小于千分之一







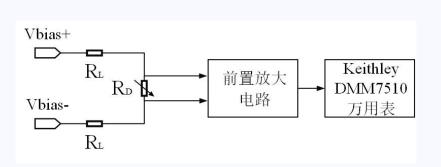

## 前置放大电路测试

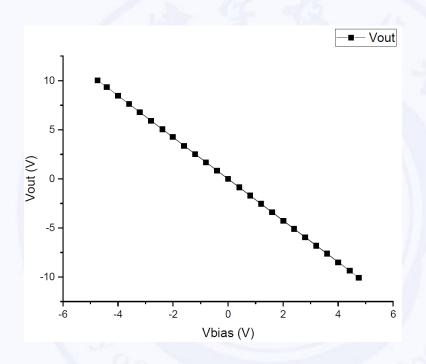
> 等效输入噪声频谱



- ▶ 10 nV /√Hz @ 1 Hz; 频带内平均: 2.95 nV /√Hz
- ➤ RMS噪声
  - ➤ 43.7 nVrms @ 120 Hz; 110 nVrms @ 1 kHz; 140 nVrms@ 5 kHz
- ▶ 理想能量分辨率: 329 eV FWHM



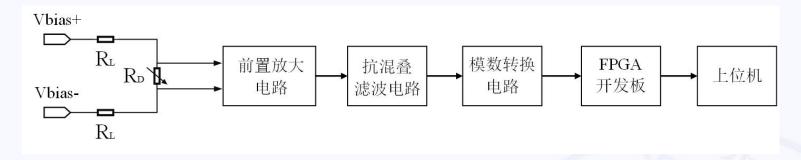


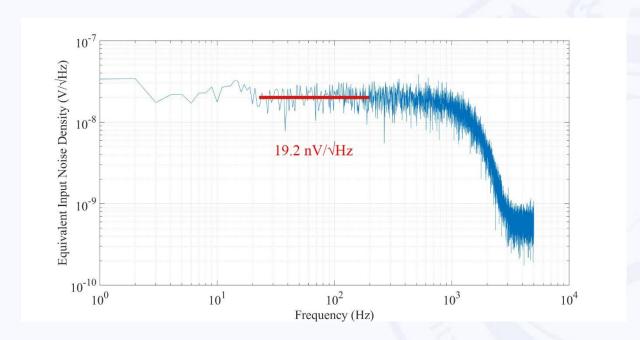


### 偏置电路测试

➤ 电压范围: 约-4.5 V到+4.5 V

➤ 电流范围: -0.2 nA到+0.2 nA

▶ 测得实际电阻: 193.8 MΩ (标称200 MΩ)








## 系统综合测试









## 报告提纲

- ▶ 低温微量热器读出电子学系统简况
- ▶ 2020年工作进展
- ▶ 下一步工作计划





## 下一步工作计划

- ▶ 直流偏置电路的优化
  - 利用数字电位器、数控开关代替机械电位器和开关
  - 低噪声、低漂移、高电源抑制比的直流电源的研究
- ▶ 微小电流测试方法
  - 对不同型号JFET漏电流的实际测试
  - 对实际前置放大电路输入电流的测试
- ▶ 前置放大电路的研究
  - 基于HEMT实现低温前置放大电路
  - 温度/基线补偿电路
  - 程控增益
- ▶ 电路模块的集成和探测器阵列的实现





## 谢谢大家!