α -cluster structures above double shell closures via χ EFT double-folding potentials

Dong BAI (柏栋)

School of Physics Science and Engineering, Tongji University

March 10, 2021

Workshop on recent progress in THSR research

Dong Bai and Zhongzhou Ren, α -cluster structures above double shell closures via double-folding potentials from chiral effective field theory, Physical Review C, under review (2021).

Dong Bai and Zhongzhou Ren, *Three-body cluster structures in the heaviest* α *-conjugate nucleus* ¹⁰⁸*Xe* (2021).

Outline

1 Introduction

- α clustering above double-shell closures
- Motivation
- 2 Theoretical Framework
 - χ EFT double-folding potentials
 - Two-body cluster model
 - Three-body cluster model
- 3 Numerical Results
 - Two-body cluster structures in ⁸Be, ..., ²¹²Po
 - Three-body cluster structures in ¹⁰⁸Xe

4 Summary

Introduction

α clustering above double shell closures

- 2p + 2n +doubly magic nucleus
- 4p + 4n +doubly magic nucleus

Motivation

 $\blacksquare \text{ Two-body cluster model} \rightarrow \bigcirc + \alpha$

- ⁸Be = $\alpha + \alpha$, ²⁰Ne = ¹⁶O + α , …
- Three-body cluster model $\rightarrow \bigcirc + \alpha + \alpha$

$$108 \text{Xe} = 100 \text{Sn} + \alpha + \alpha$$

 α -core effective potentials play a crucial role in the two-body and three-body approaches to α -cluster structures outside double shell closures.

- 1 phenomenological potentials in specific forms
- 2 double-folding potentials based on effective nucleon-nucleon interactions (M3Y, ···)

Main Goals

- Construct χ EFT double-folding potentials for α + doubly magic nucleus systems
- Study two-body and three-body cluster structures above double shell closures based on χEFT double-folding potentials

Theoretical Framework

χEFT double-folding potentials

Chiral effective field theory (χEFT) is widely regarded as the standard model for nuclear interactions.

- Weinberg, van Kolck, Machleidt, Entem, Meißner, Epelbaum, Forssén, Ekström, Gezerlis, · · · ;
- EFT for nucleons and pions obeying chiral symmetry breaking;
- Power-counting scheme
 Hierarchical structures of 2N, 3N, 4N, · · · interactions;
 - Systematical improvement;
 - o Uncertainty quantification.

In practice, χ EFT gives different realizations of chiral potentials, which are generally **non-local** in coordinate space.

• dependence on
$$\mathbf{k} \equiv (\mathbf{p} + \mathbf{p}')/2$$

non-local regulator

Local chiral potentials are available up to the next-to-next-to-leading order (N^2LO).

A. Gezerlis *et al.*, Phys. Rev. Lett. **111**, 032501 (2013).
A. Gezerlis *et al.*, Phys. Rev. C **90**, 054323 (2014).

At the N²LO, local chiral NN potentials are given by

$$\begin{split} V_{\text{chiral}}(\boldsymbol{r}) &= \mathcal{V}_{\text{long}}(\boldsymbol{r}) \left\{ 1 - \exp[-(r/R_0)^4] \right\} + \mathcal{V}_{\text{short}}(\boldsymbol{r}), \\ \mathcal{V}_{\text{long}}(\boldsymbol{r}) &= V_{\text{C}}(r) + W_{\text{C}}(r)\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + [V_{\text{S}}(r) + W_{\text{S}}(r)\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2] \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \\ &+ [V_{\text{T}}(r) + W_{\text{T}}(r)\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2] S_{12}, \\ \mathcal{V}_{\text{short}}(\boldsymbol{r}) &= (C_{\text{S}} + C_{\text{T}}\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) \,\delta_{R_0}(\boldsymbol{r}) - (C_1 + C_2\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \Delta \delta_{R_0}(\boldsymbol{r}) \\ &- (C_3 + C_4\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \,\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \Delta \delta_{R_0}(\boldsymbol{r}) + \frac{C_5}{2} \frac{\partial_r \,\delta_{R_0}(\boldsymbol{r})}{r} \boldsymbol{L} \cdot \boldsymbol{S} \\ &+ (C_6 + C_7\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \\ &\times \left\{ (\boldsymbol{\sigma}_1 \cdot \hat{\boldsymbol{r}}) (\boldsymbol{\sigma}_2 \cdot \hat{\boldsymbol{r}}) \left[\frac{\partial_r \,\delta_{R_0}(\boldsymbol{r})}{r} - \partial_r^2 \delta_{R_0}(\boldsymbol{r}) \right] - \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \frac{\partial_r \,\delta_{R_0}(\boldsymbol{r})}{r} \right\} \end{split}$$

 $\delta_{R_0}(\mathbf{r}) = \frac{1}{\pi\Gamma(3/4)R_0^3} \exp[-(r/R_0)^4]$ is the regularized delta function, with R_0 being the **regularization scale** in coordinate space.

The double-folding potential between the α cluster and the core nucleus is given by

$$\begin{split} U_{\mathrm{DF}}(\boldsymbol{R}) &= U_{\mathrm{D}}(\boldsymbol{R}) + U_{\mathrm{Ex}}(\boldsymbol{R}), \\ U_{\mathrm{D}}(\boldsymbol{R}) &= \sum_{i,j=p,n} \int \mathrm{d}^{3} r_{\alpha} \int \mathrm{d}^{3} r_{C} \, \rho_{\alpha}^{i}(\boldsymbol{r}_{\alpha}) V_{\mathrm{D}}^{ij}(\boldsymbol{s}) \, \rho_{C}^{j}(\boldsymbol{r}_{C}), \\ U_{\mathrm{Ex}}(\boldsymbol{R}) &= \sum_{i,j=p,n} \int \mathrm{d}^{3} r_{\alpha} \int \mathrm{d}^{3} r_{C} \, \rho_{\alpha}^{i}(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_{\alpha} + \boldsymbol{s}) V_{\mathrm{Ex}}^{ij}(\boldsymbol{s}) \, \rho_{C}^{j}(\boldsymbol{r}_{C}, \boldsymbol{r}_{C} - \boldsymbol{s}) \\ &\times \exp(i\boldsymbol{k}_{\mathrm{rel}} \cdot \boldsymbol{s}/A_{\mathrm{red}}), \end{split}$$

Two-body cluster model

Model space

■ Wildermuth condition \circ^{8} Be: $G \equiv 2N + L < 4$ × \circ^{20} Ne: G < 8 × \circ^{44} Ti: G < 12 × \circ^{52} Ti: G < 12, (G, L) = (12, 12) × \circ^{104} Te: G < 16, (G, L) = (14, 16), (16, 16) × \circ^{212} Po: G < 22, (G, L) = (22, 20), (22, 22) ×

Three-body cluster model

Model space

Hamiltonian

$$\begin{split} H_{3B} &= T_{3B} + \int d^3 r'_1 \, V_{\alpha\alpha}(\boldsymbol{r}_1, \boldsymbol{r}'_1) + \int d^3 r'_2 \, V_{\alphac}(\boldsymbol{r}_2, \boldsymbol{r}'_2) + \int d^3 r'_3 \, V_{\alphac}(\boldsymbol{r}_3, \boldsymbol{r}'_3) + W_{3B}(\rho), \\ V_{\alpha\alpha}(\boldsymbol{r}_1, \boldsymbol{r}'_1) &= \sum_{LM} \langle \hat{r}_1 | LM \rangle \, \langle LM | \hat{r}'_1 \rangle \, [U_{\alpha\alpha L}(r_1) + U^{\text{rep}}_{\alpha\alpha L}(r_1)] \, \delta(r_1 - r'_1) / r'_1^2, \\ V_{\alpha c}(\boldsymbol{r}_b, \boldsymbol{r}'_b) &= \sum_{LM} \langle \hat{r}_b | LM \rangle \, \langle LM | \hat{r}'_b \rangle \, [U_{\alpha c L}(r_b) + U^{\text{rep}}_{\alpha c L}(r_b)] \delta(r_b - r'_b) / r'^2_b, \\ U_{\alpha \alpha L}(r_1) &= U^{\text{Coul}}_{\alpha \alpha}(r_1) + \lambda_{\alpha \alpha L} U^{\text{Nucl}}_{\alpha \alpha}(r_1), \\ U_{\alpha c L}(r_b) &= U^{\text{Coul}}_{\alpha c}(r_b) + \lambda_{\alpha c L} U^{\text{Nucl}}_{\alpha \alpha}(r_b). \end{split}$$

Stochastic variational method (SVM)

$$\Psi_{3B} = \sum_{i=1}^{M_{\text{max}}} f_i \left[\Phi_{1i}(\mathbf{r}_1, \mathbf{R}_1) + \overline{\Phi}_{1i}(\mathbf{r}_1, \mathbf{R}_1) \right] + \sum_{j=1}^{N_{\text{max}}} g_j \left[\Phi_{2j}(\mathbf{r}_2, \mathbf{R}_2) + \Phi_{2j}(\mathbf{r}_3, \mathbf{R}_3) \right],$$

$$\Phi_{ak}(\mathbf{r}_a, \mathbf{R}_a) = \exp(-A_{ak} r_a^2 - B_{ak} R_a^2 - 2C_{ak} \mathbf{r}_a \cdot \mathbf{R}_a),$$

$$\overline{\Phi}_{ak}(\mathbf{r}_a, \mathbf{R}_a) = \exp(-A_{ak} r_a^2 - B_{ak} R_a^2 + 2C_{ak} \mathbf{r}_a \cdot \mathbf{R}_a), \quad (a = 1, 2).$$

Here, $\{A_{ak}, B_{ak}, C_{ak}\}$ are the nonlinear SVM parameters, $\{f_i, g_j\}$ are the linear expansion coefficients, and $\Phi_{ak}(\mathbf{r}_a, \mathbf{R}_a)$ is the explicitly correlated Gaussian basis function.

Y. Suzuki and K. Varga, *Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems* (Springer, New York, 1998).

Numerical Results

Two-body cluster structures in ⁸Be, \cdots , ²¹²Po

Soft local chiral NN potentials

V. Durant, P. Capel, L. Huth, A. B. Balantekin, and A. Schwenk (2018).

- regularization scale $R_0=1.6 \text{ fm} \rightarrow \text{soft}$
- C_S, C_T, C₁, ..., C₇ determined by fitting Nijmegen *np* phase shifts in ¹S₀, ³S₁, ¹P₁, ³P₀, ³P₁, ³P₂, and ³S₁-³D₁ channels at 1, 5, 10, 25, 50, 100, and 150 MeV.
- deuteron binding energy $E_d = 2.178$ MeV.

$\chi {\rm EFT}$ double-folding potentials for $\alpha + {\rm doubly}$ magic nucleus systems

In two-body cluster model,

$$\left[-\frac{\nabla_{\boldsymbol{R}}^2}{2m_{\text{red}}}+U(\boldsymbol{R})\right]\Psi_{NLM}(\boldsymbol{R})=E_{NL}\Psi_{NLM}(\boldsymbol{R}),$$

 $U(\boldsymbol{R}) = \lambda_{NL} U_{\text{DF},N}(\boldsymbol{R}) + U_{\text{DF},C}(\boldsymbol{R}).$

• λ_{NL} : phenomenological renormalization factor • $U_{DF,N}(\mathbf{R})$: nuclear part of the χ EFT double-folding potential • $U_{DF,C}(\mathbf{R})$: Coulomb part of the χ EFT double-folding potential

 λ_{NL} is determined by reproducing exactly experimental energy of α -cluster state.

- $\Gamma_{\alpha} \ge 0.01 \text{ MeV} \rightarrow \text{complex scaling method (CSM)}$
- $\Gamma_{\alpha} < 0.01 \text{ MeV} \rightarrow \text{modified two-potential approach/calculable} R-\text{matrix theory}$

$${}^{8}\text{Be} = \alpha + \alpha$$

Nucleus	G	L^{π}	λ_{NL}	Γ^{\exp}_{α}	Γ^{χ}_{α}	$\Gamma_{\alpha}^{\rm NL}$	$R_{ m rel}^{\chi}$	
				[MeV]	[MeV]	[MeV]	[fm]	
⁸ Be	4	0^+_1	1.4340275	$(5.57\pm0.25)\!\times\!10^{-6}$	6.09×10^{-6}	9.8×10^{-6}	5.33	
		2_{1}^{+}	1.402429	1.513 ± 0.015	1.72	1.33	2.59+0.31i	
		4_{1}^{+}	1.46325	≈ 3.5	3.18	4.4	2.90+0.80i	

 ${}^{20}\text{Ne} = \alpha + {}^{16}\text{O}$

Nucleus	G	L^{π}	λ_{NL}	Γ_{α}^{\exp}	Γ^{χ}_{α}	P_{α}^{AMD}	P^{χ}_{α}	$P^{\rm h}_{lpha}$	$B(E2\downarrow)_{exp}$	$B(E2\downarrow)_{\chi}$	$B(E2\downarrow)_h$	$R_{\rm rel}^{\chi}$
				[MeV]	[MeV]					[W.u.]	[W.u.]	[fm]
20 Ne	8	0^+_1	1.1518273			0.70						3.79
		2_{1}^{+}	1.1370375			0.68			20.3 ± 1.0	13.0	14.3	3.80
		4_{1}^{+}	1.13190728			0.54			22 ± 2	17.1	18.5	3.73
		6^+_1	1.1172209	$(1.1 \pm 0.2) \times 10^{-4}$	3.64×10^{-4}	0.34	0.30 ± 0.05	0.19 ± 0.04	20 ± 3	15.2	15.2	3.62
		8_{1}^{+}	1.1674842	$(3.5 \pm 1.0) \times 10^{-5}$	1.98×10^{-4}	0.28	0.18 ± 0.05	0.095 ± 0.027	9.0 ± 1.3	7.0	7.9	3.21
	9	1^1	1.1919326	$(2.8 \pm 0.3) \times 10^{-5}$	2.72×10^{-5}	0.95	1.03 ± 0.11	0.82 ± 0.09				4.78
		3^2	1.2043384	$(8.2 \pm 0.3) \times 10^{-3}$	7.95×10^{-3}	0.93	1.03 ± 0.04	0.67 ± 0.02	50 ± 8	41.6	77.0	4.84
		5^3	1.2074985	0.145 ± 0.40	0.114	0.88	1.27 ± 0.35	0.73 ± 0.20		40.0+9.6i	126.9	4.52 + 0.30i
		7^3	1.202514	0.110 ± 0.010	0.314	0.71	0.35 ± 0.03	0.20 ± 0.02		27.8 + 10.7i	154.9	4.09 + 0.32i
		9^5	1.18843	0.225 ± 0.040	0.354	0.70	0.64 ± 0.11	0.38 ± 0.07		14.7+6.5i	36.6	3.69 + 0.23i

- $1_1^-, 3_2^-, 5_3^-$ states almost have pure α -cluster configurations.
- α -formation probabilities extracted by $P_{\alpha} = \Gamma_{\alpha}^{\exp} / \Gamma_{\alpha}^{\text{th}}$ are generally compatible with AMD.
- Enhancement of $B(E2\downarrow)_{3^-_2 \to 1^-_1}$ is reproduced.

Nucleus	L^{π}	λ_{NL}	$B(E2\downarrow)_{exp}$	$B(\mathrm{E}2\downarrow)_{\chi}$	$B(E2\downarrow)_{WS^2}$	$R_{\rm rel}^{\chi}$
			[W.u.]	[W.u.]	[W.u.]	[fm]
$^{52}\mathrm{Ti}$	0^+_1	0.9656424				4.20
	2_{1}^{+}	0.9564093	$7.5\substack{+0.4 \\ -0.3}$	7.1	9.4	4.20
	4_{1}^{+}	0.9497294	$9.5^{+1.4}_{-1.1}$	9.6	12.3	4.16
	6^+_1	0.9550252	$8.7\substack{+0.6 \\ -0.5}$	8.8	11.6	4.05
	8_{1}^{+}	0.9584199	0.76 ± 0.09	7.1	9.5	3.93
	10^{+}_{1}	0.95336506		5.0	6.6	3.80

 ${}^{52}\mathrm{Ti} = \alpha + {}^{48}\mathrm{Ca}$

 212 Po = $\alpha + ^{208}$ Pb

Nucleus	G	L^{π}	λ_L	P_{α}	$\Gamma^{\rm th}_{lpha}$	$\Gamma^{\rm th, refined}_{\alpha}$	Γ_{α}^{exp}	$B(E2\downarrow)_{th}$	$B(E2\downarrow)_{exp}$	$\sqrt{\langle R^2 \rangle}_{\rm rel}$
					[MeV]	[MeV]	[MeV]	[W.u.]	[W.u.]	[fm]
²¹² Po	22	0_{1}^{+}	1.0459895	0.094	$1.62\!\times\!10^{-14}$	$1.53\!\times\!10^{-15}$	$(1.53\pm0.01)\!\times\!10^{-15}$			6.26
		2_{1}^{+}	1.0376702	0.099	$4.18\!\times\!10^{-13}$	$4.12\!\times\!10^{-14}$		6.3		6.29
		4_{1}^{+}	1.031552	0.095	$8.13\!\times\!10^{-13}$	$7.72\!\times\!10^{-14}$		8.8		6.27
		6_{1}^{+}	1.02607	0.085	$3.19\!\times\!10^{-13}$	$2.72\!\times\!10^{-14}$	$(1.8^{+1.2}_{-0.5}) \times 10^{-14}$	9.1	3.9 ± 1.1	6.22
		8_{1}^{+}	1.020155	0.072	3.97×10^{-14}	$2.85\!\times\!10^{-15}$	$(1.9^{+0.4}_{-0.3}) \times 10^{-15}$	8.7	2.30 ± 0.09	6.15
		10_{1}^{+}	1.010274	0.059	7.28×10^{-15}	$4.30\!\times\!10^{-16}$		7.9	2.2 ± 0.6	6.09
		12_{1}^{+}	0.993857	0.048	$5.57\!\times\!10^{-15}$	$2.69\!\times\!10^{-16}$		7.1		6.03
		14_{1}^{+}	0.982049	0.033	$1.34\!\times\!10^{-16}$	$4.40\!\times\!10^{-18}$		5.8		5.96
		18_{1}^{+}	0.95507	0.0034	$3.01\!\times\!10^{-21}$	$1.01\!\times\!10^{-23}$	$(1.01^{+0.02}_{-0.01}) \times 10^{-23}$			5.81

- $P_{\alpha}(0_1^+) = 0.094$, consistent with $P_{\alpha}(0_1^+) = 0.1045$ given by quartetting wave function approach
- $P_{\alpha}(18^+_1) = 0.0034 \rightarrow \text{shell-model state}$

Three-body cluster structures in ¹⁰⁸Xe

• with $W_{3B}(\rho)$

We take W = -4.85 MeV and $\rho_{3B} = 9$ fm. The three-body energy is found to be $E_{3B} = 9.605$ MeV, well consistent with the experimental value ≈ 9.70 MeV.

Density distributions of valence α clusters 10 14 (a) (b) 12 (5.99, 6.00)10 R_2 (fm) R1 (fm) 8 (8.55, 4.25)2 0^L 2 8 10 12 4 2 8 10 14 6 r₂ (fm) r_1 (fm) $\sqrt{\langle r_2^2 \rangle} = 6.159 \text{ fm}, \sqrt{\langle R_2^2 \rangle} = 6.155 \text{ fm}, \sqrt{\langle r_1^2 \rangle} = 8.555 \text{ fm}, \sqrt{\langle R_1^2 \rangle} = 4.432 \text{ fm}$ The relative angle between \mathbf{r}_2 and \mathbf{R}_2 is found to be $\theta_2 = \arccos\left(\frac{\langle r_2^2 \rangle + \langle \mathbf{R}_2^2 \rangle - \langle r_1^2 \rangle}{2\sqrt{\ell_1 r_2^2 \setminus \langle \mathbf{R}^2 \rangle}}\right)$ = 88 degree ≈ 90 degree.

 \rightarrow isosceles right triangle in the ground state of 108 Xe

Reduced width amplitudes

The α -decay half-life of ${}^{108}\text{Xe} \rightarrow \alpha + {}^{104}\text{Te}$ is found to be $T_{1/2}^{\text{th}} \approx 43 \ \mu\text{s}$, in good agreement with the experimental value $T_{1/2}^{\text{exp}} = 58^{+106}_{-23} \ \mu\text{s}$. The ⁸Be-emission half-life is about 2×10^9 s, larger than the α -decay half-life $T_{1/2}^{\text{th}}$ by thirteen orders of magnitude.

Summary

Summary

- We study two-body and three-body α-cluster structures above double shell closures via χEFT double-folding potentials.
- ⁸Be, ²⁰Ne, ^{44,52}Ti, ¹⁰⁴Te, and ²¹²Po are studied within two-body cluster models to justify χ EFT double-folding potentials.
- The heaviest self-conjugate nucleus ¹⁰⁸Xe is studied within the three-body cluster model. The α -decay half-life is found to be $T_{1/2}^{\text{th}} \approx 43 \ \mu\text{s}$, in good agreement with the experimental value $T_{1/2}^{\text{exp}} = 58_{-23}^{+106} \ \mu\text{s}$. A novel isosceles right triangular structure made of the two valence α clusters and ¹⁰⁰Sn is found in the ground state of ¹⁰⁸Xe.

The End

χEFT double-folding potentials

Proton density distributions of α particle, ¹⁶O, ^{40,48}Ca, and ²⁰⁸Pb are realistic sums of Gaussians determined in elastic electron scattering experiments, to which **neutron** density distributions are proportional. H. De Vries, C. W. De Jager, and C. De Vries (1987).

For ¹⁰⁰Sn, São Paulo distributions are taken

$$\rho^{p,n}(r) = \frac{\rho_0^{p,n}}{1 + \exp\left(\frac{r - R_{p,n}}{a_{p,n}}\right)},$$

with $R_p = 1.81Z^{1/3} - 1.12$ fm, $R_n = 1.49N^{1/3} - 0.79$ fm, $a_p = 0.47 - 0.00083Z$ fm, and $a_n = 0.47 + 0.00046N$ fm.

 \circ charge radius = 4.58 fm, consistent with 4.525 \sim 4.707 fm from *ab initio* SCGF + N²LO_{sat} chiral potentials.

L. C. Chamon *et al.*, Phys. Rev. C **66**, 014610 (2002). P. Arthuis, C. Barbieri, M. Vorabbi, and P. Finelli, arXiv:2002.02214. $\rho_{\alpha(C)}^{p,n}(\mathbf{r}_{\alpha(C)},\mathbf{r}_{\alpha(C)}\pm s)$ are **density matrix elements** and can be estimated by realistic localization approximation.

D. T. Khoa, W. von Oertzen, and H. G. Bohlen (1994).

 $V_{D(Ex)}^{ij}(s)$ is the NN interaction in the **direct** (exchange) channel.

For α + doubly magic nucleus, only the central parts of local chiral *NN* potentials make contributions.

$$V_{\mathrm{D,Ex}}^{pp,nn}(s) = \frac{1}{4} \left[V^{01}(s) \pm 3V^{11}(s) \right],$$

$$V_{\mathrm{D,Ex}}^{pn,np}(s) = \frac{1}{8} \left[\pm V^{00}(s) + V^{01}(s) + 3V^{10}(s) \pm 3V^{11}(s) \right],$$

with $V^{ST}(s) \equiv \langle SM_STM_T | V(s) | SM_STM_T \rangle$ being the spin-isospin projection of the central parts of local chiral NN potentials.

$\frac{^{44}\mathrm{Ti}=\alpha+{}^{40}\mathrm{Ca}}{}$

Nucleus	G	L^{π}	λ_{NL}	$B(\mathrm{E}2\downarrow)_{\chi}$	$B(E2\downarrow)_{exp}$	$R_{\rm rel}^{\chi}$
				[W.u.]	[W.u.]	[fm]
$^{44}\mathrm{Ti}$	12	0^+_1	1.1019607			4.32
		2_{1}^{+}	1.0915923	9.9	13 ± 4	4.33
		4_{1}^{+}	1.0853305	13.4	30 ± 5	4.28
		6_{1}^{+}	1.08476	12.7	17.0 ± 2.4	4.18
		8_{1}^{+}	1.078867	10.5		4.06
		10^{+}_{1}	1.0990893	6.7		3.85
		12_{1}^{+}	1.1338819	3.0		3.63
	13	1_{2}^{-}	1.1232387			4.86
		3_6^-	1.116978	20.0		4.83
		5^{-}_{3}	1.1053947	22.1		4.78
		7_2^-	1.0972716	20.7		4.67

Benchmark of the SVM code

Positronium negative ion $Ps^- = e^- + e^- + e^+$

Channel-radius dependence

