α clustering and neutron-skin thickness of carbon isotopes

Reporter: Qing Zhao Collaborators: Yoshiki Suzuki Jiajing He Bo Zhou Masaaki Kimura

Background: α formation probability

A Initial state

J. Tanaka et al, Science 371, 260 (2021)

Recently, the a knockout (p, pa) reaction has been established and the a cluster formation at the surface of Sn isotope chain has been measured for the first time.

B Final state

It has been shown that the knockout cross section monotonically decreases in neutron-rich Sn isotopes

It indicates the negative correlation between the neutron skin thickness and α cluster formation.

Background: α formation probability

C. Xu et al, Phys. Rev. C 95, 061306 (2017)

A microscopic calculation of acluster formation in heavy nuclei is performed by using the quartetting wave function approach.

Hence, the growth of neutron skin looks preventing the a clustering at the surface of heavy nuclei.

How about in light nuclei?

Motivated by this question, we investigate the relationship between the neutron-skin thickness and α clustering in C isotopes.

Framework: Antisymmetrized molecular dynamics

Single particle wave function:

$$egin{aligned} arphi_i(m{r}) &= \exp \left\{ -\sum_{\sigma=x,y,z}
u_\sigma \left(r_\sigma - Z_{i\sigma}
ight)^2
ight\} \chi_i au_i, \ \chi_i &= a_i \chi_\uparrow + b_i \chi_\downarrow, \quad au_i &= \{ ext{proton or neutron} \}. \end{aligned}$$

AMD wave function:

$$\Phi^{\pi} = P^{\pi} \mathcal{A} \{ \varphi_1 \varphi_2 \dots \varphi_A \}$$

Frictional cooling method:

$$E(eta) = rac{\langle {\pmb \Phi}^\pi | H | {\pmb \Phi}^\pi
angle}{\langle {\pmb \Phi}^\pi | {\pmb \Phi}^\pi
angle} + v_eta (\langle eta
angle - eta)^2,$$

Deformation parameter: β

GCM wave function:

$$\begin{split} \Psi_{\alpha}^{J\pi} &= \sum_{iK} g_{iK\alpha} \Phi_{MK}^{J\pi}(\beta_i). \end{split} \\ \text{Hamiltonian:} \\ H &= \sum_{i}^{A} t_i - t_{\text{cm}} + \frac{1}{2} \sum_{ij}^{A} v_{\text{NN}}(ij) + \frac{1}{2} \sum_{ij \in \text{proton}}^{Z} v_{\text{C}}(ij) \end{split}$$

Framework: Reduced width amplitude

Reduced width amplitude (RWA) :

$$ay_\ell(a) = \sqrt{inom{A}{4}} \, \langle \delta(r-a) arPsi_lpha [arPsi_{\mathrm{Be}(\ell^+)} Y_\ell(\hat{r})]_0 | arPsi_\mathrm{C}
angle$$

The probability amplitude to find the a cluster at distance a from the daughter nucleus.

a spectroscopic factor:

$$S_lpha(\ell^+ imes\ell) = \int_0^\infty r^2 dr \; y_\ell^2(r).$$

Only in the exterior region

 $S^>_lpha(\ell^+ imes\ell) = \int_{\sqrt{\langle r_m^2
angle}}^\infty r^2 dr \; y^2_\ell(r),$

Results: Energy spectra

The calculated low-lying spectra of Be and C isotopes compared with the experimental data. Only the positiveparity states are shown.

We have gotten very nice wave functions of Be and C isotopes.

Results: Density distributions

The calculated point proton and neutron density distributions of the ground states of C isotopes. The densities are normalized to the particle numbers.

	eta	$B(E2\uparrow)$	$\sqrt{\langle r_p^2 angle}$	$\sqrt{\langle r_n^2 angle}$	$\sqrt{\langle r_m^2 angle}$	Δr	$S_{lpha}(0^+_1 imes 0)$	$S^>_lpha(0^+_1 imes 0)$
¹⁰ Be	0.56	11.2	2.43	2.50	2.47	0.07		
^{12}Be	0.60	14.3	2.63	2.91	2.82	0.28		
^{14}Be	0.59	12.8	2.63	3.03	2.92	0.40		
^{12}C	0.50	11.2	2.52	2.52	2.52	0.00	0.30	0.24
^{14}C	0.34	1.4	2.54	2.59	2.57	0.05	0.10	0.08
^{16}C	0.39	5.6	2.60	2.83	2.74	0.23	0.05	0.04
^{18}C	0.45	4.7	2.65	2.98	2.87	0.33	0.04	0.04
${}^{16}C$ ${}^{18}C$	$0.39 \\ 0.45$	5.6 4.7	2.60 2.65	2.83 2.98	2.74 2.87	0.23 0.33	0.05 0.04	0.04 0.04

Results: Reduced width amplitudes

The calculated α RWA of carbon isotopes, where ℓ^+ denotes the spin-parity of Be and ℓ denotes orbital angular momentum between α and the Be. The panels (d) and (f) show the RWAs of 14C and 16C in the α + Be^{*} channels where Be isotopes are excited to the non-yrast states.

Results: a spectroscopic factor

(letf) The calculated α spectroscopic factors as function of the neutron-skin thickness.

(right) Same with the panel (left), but the RWAs are integrated in the nuclear exterior ($r \ge \sqrt{\langle r_m^2 \rangle}$).

Summary

Q. Zhao et al. arXiv:2102.11733

- We have investigated the relationship between the neutron-skin thickness and α clustering of C isotopes to elucidate the possible clustering suppression by neutron skin.
- The AMD framework has successfully described the low-lying spectra of both isotope chains simultaneously.
- Using the obtained wave functions, we have evaluated the neutron-skin thickness and α clustering. It has been shown that 16C and 18C have thick neutron skin, while 12C and 14C do not.
- The calculated α spectroscopic factors show the negative correlation with the neutron-skin thickness. Namely, α clustering is considerably suppressed in 16 C and 18 C. Thus, the growth of the neutron skin seems to suppress the α clustering of C isotopes similarly to those observed in Sn isotopes.
- However, we also point out that neutron shell effect may also play the crucial role and can be the real cause of the α clustering suppression. This will be clarified by investigating the trends in the neighboring isotopes chains.

Thank you for attention