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Background: a formation probability

J. Tanaka et al, Science 371, 260 (2021)
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Background: a formation probability

C. Xu et al, Phys. Rev. C 95, 061306 (2017)

A microscopic calculation of a-
cluster formation in heavy nuclei

Is performed by using the
quartetting wave function
approach.

Hence, the growth of neutron
skin looks preventing the a
clustering at the surface of
heavy nuclei.

How about in light nuclei?

Neutron number (N)

Motivated by this question, we investigate the relationship between the
neutron-skin thickness and a clustering in C isotopes.
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Framework: Antisymmetrized molecular dynamics

Single particle wave function:
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Xi = a;X++ bixy, i = {proton or neutron}.
AMD wave function:
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Frictional cooling method:
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Deformation parameter: f
GCM wave function:
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Framework: Reduced width amplitude

Reduced width amplitude (RWA) :

aye(a) = 1/ (1) (6(r — a)Pu[Ppe(e+)Ye(7)]o|Pc)

The probability amplitude to find the a cluster
at distance a from the daughter nucleus.

a spectroscopic factor:
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Results: Energy spectra
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The calculated point proton and neutron

density distributions of the ground states
of C isotopes. The densities are

o 2

normalized to the particle numbers.

2 ¢ (fm) 4 6
B B(E21) /(r2) V{r2) V{Z) Ar Sa(0f x0) SZ(0f x0)
10Be 0.56 11.2 2.43 2.50 2.47
12Be  0.60 14.3 2.63 2.91 2.82
14Be  0.59 12.8 2.63 3.03 2.92
12Cc° 0.50 11.2 2.52 2.52 2.52 0.30
14Cc 0.34 1.4 2.54 2.59 2.57 0.10
16C  0.39 5.6 2.60 2.83 2.74 0.05
I8¢ 0.45 4.7 2.65 2.98 2.87 0.04




Results: Reduced width amplitudes
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The calculated a RWA of carbon isotopes, where ¢t denotes the spin-parity of Be

and ¢ denotes orbital angular momentum between a and the Be. The panels (d) and

(f) show the RWAs of 14C and 16C in the a + Be* channels where Be isotopes are
excited to the non-yrast states.



Results: a spectroscopic factor
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(letf) The calculated a spectroscopic factors as function of the neutron-skin

thickness.

(right) Same with the panel (left), but the RWAs are integrated in the nuclear

exterior ( r >4 /(r2) )



Summary

Q. Zhao et al. arXiv:2102.11733

We have investigated the relationship between the neutron-skin thickness and a
clustering of C isotopes to elucidate the possible clustering suppression by
neutron skin.

The AMD framework has successfully described the low-lying spectra of both
Isotope chains simultaneously.

Using the obtained wave functions, we have evaluated the neutron-skin
thickness and a clustering. It has been shown that 16C and 18C have thick
neutron skin, while 12C and 14C do not.

The calculated a spectroscopic factors show the negative correlation with the
neutron-skin thickness. Namely, a clustering is considerably suppressed in 16 C
and 18 C. Thus, the growth of the neutron skin seems to suppress the a
clustering of C isotopes similarly to those observed in Sn isotopes.

However, we also point out that neutron shell effect may also play the crucial
role and can be the real cause of the a clustering suppression. This will be
clarified by investigating the trends in the neighboring isotopes chains.
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