
Data Production with DIANA
in CUORE

Matteo Biassoni
Diana and Data Production Bootcamp - November 2020

Outline

● Data structure: RDCF, QRaw, Production files

● DAQ and analysis database

● Event concept and structure

● The Sequence

● The Module

● The online data production workflow

● The reprocessing workflow

2Diana and CUORE data production virtual bootcamp - November 16th 2020

Data structure

In CUORE we have basically 3 types of data files:

● RDCF
● QRaw
● Production (or any other name you choose)

All are rootfiles, can be opened and inspected directly from root, although contain
some objects that need a working Diana installation to be understood.

All types of files are grouped by Run at all steps of the workflow.

3Diana and CUORE data production virtual bootcamp - November 16th 2020

Data-taking organisation

● Data are collected during RUNs of ~24h duration
● Every ~1-1.5 months worth of data ~1week of calibration runs is acquired
● Initial calibrations + background + final calibrations form a DATASET
● Calibrations are typically shared among adjacent datasets
● Once a week a Working Point Measurement is taken

INIT
CAL BACKGROUND (+WP) SHARED

CAL BACKGROUND (+WP) FINAL
CAL

ds3001
ds3002

4Diana and CUORE data production virtual bootcamp - November 16th 2020

Data structure: RDCF files
● Files that store the continuous data stream from the detectors
● Data are grouped by DataReader, no geometrical information
● Also list of triggers is stored

D
et

ec
to

rs

Fr
on

t-e
nd

C1

C2 D
A

Q
 c

ra
te

s

Cryostat
DataReaders: one
RDCF file per run each

QRaw_RDCF_${RUN}_${MEAS
TYPE}_C1_p###.root

QRaw_RDCF_${RUN}_${MEAS
TYPE}_C2_p###.root

... ...

...

5Diana and CUORE data production virtual bootcamp - November 16th 2020

...

Data structure: QRaw files
● Files that store the information about triggered EVENT
● Data from all channels grouped in a single file
● Only basic DAQ-related information is stored, but the event structure is already created

DataReaders: one
RDCF file per run each DataReaders also run online trigger (signal,

pulser, noise). Trigger information passed over to
Builder

Builder: processes the trigger information from
DataReaders, “builds” the events and store them
in a single QRaw file per run

QRaw_${RUN}_${MEASTYPE}_p###.root

Trigger

Trigger

6Diana and CUORE data production virtual bootcamp - November 16th 2020

Data structure: Production files

● Created at the first step of the data production (DP from now on), called preprocess
● Can have any name, convention in use:

Production_${RUN}_${TOWER}_${MEASTYPE}_p###.root
MEASTYPE can be:

- C = Calibration
- B = Background
- T = Test
- R = Reprocess (with a different RUN that diana associates to the original via DB)

● Store the original events from QRaw files, grouped by RUN and TOWER (19 files per run)
● Each event is an entry of a QTree, a diana object based on root TTree
● More quantities are added to the event at any step of the DP
● Each step of the DP actually creates a new QTree which is a “friend” of the original one

○ each QTree can be stored in an independent file, but during “standard” DP all trees are “merged” in
the same file and made friends

7Diana and CUORE data production virtual bootcamp - November 16th 2020

Data structure: Production files
● The high level content of Production files can be inspected with diana-rootfilehandler

● All qtrees are listed. Name is:
○ qtree for the first one (created by preprocess sequence)
○ qtree_NameOfSequence for the following ones

● diana-rootfilehandler can perform many operations on the files, including removing a
specific tree. See diana-rootfilehandler -h for options

8Diana and CUORE data production virtual bootcamp - November 16th 2020

Data structure: Production files
● From root we can inspect the content of a Production file with more detail:

Global information, not
event-specific

9Diana and CUORE data production virtual bootcamp - November 16th 2020

DAQ and Analysis Database

● Both DAQ and analysis rely on a psql database for some information:
○ run number and start-stop information

○ daq configurations (sampling frequency, channel mapping, channel to datareader)

○ continuous file bookkeeping (where are the RDCF files for a given run/channel)

○ run to dataset association

○ BadIntervals: sections of a run that should not be used during a given step of analysis

○ BadForAnalysis: run/channels that failed a given step of the DP and therefore miss some

event quantities

10Diana and CUORE data production virtual bootcamp - November 16th 2020

Event: concept

● The EVENT in diana is a collection of quantities associated to each trigger firing on a

detector’s channel

● The trigger can be generated either

by a signal (derivative, OT, etc…), by

a pulser injecting power on the

crystal or randomly to record noise

samples

● The signal triggers are supposed to

fire as a consequence of a particle

interacting with a crystal

11Diana and CUORE data production virtual bootcamp - November 16th 2020

Event: concept

● If a particle deposits energy in N crystals (e.g. compton scattering, surface alfa, muon),

N independent signal events will be generated and stored

○ timing and geometrical correlations are reconstructed at a later stage

12Diana and CUORE data production virtual bootcamp - November 16th 2020

event 1

event 2

event 1

event 2

Multiplet info (delta T,
coincident channel,
etc…) are added to
both events

L
A
T
E
R

Event: implementation

● Each event is an entry of a QTree

● The quantities associated to the event are stored as branches of the tree

● Branches typically contain diana objects:

○ some are re-implementation of standard data types (QBool, QBaseType, etc…)

○ some are more complex objects (QPulse, QPulseParameters, QOFData, etc…)

with data members that contain the real information

○ see Stefano’s talk on how to access this information and read and write QObjects

13Diana and CUORE data production virtual bootcamp - November 16th 2020

Event: example
Branches starting with DAQ@ are those
added to the event when it was originally
created by the Builder. They exist already
in the QRaw files.

14Diana and CUORE data production virtual bootcamp - November 16th 2020

Event: example

Quantities calculated during the data
production are stored as branches with
self-explaining names

15Diana and CUORE data production virtual bootcamp - November 16th 2020

Event: variable naming

Branch name:

Owner_ExtraLabel@Label. = (QObject*)Address

Name of the module that
calculated the quantities stored
in this branch (fixed).
ExtraLabel is used if a module
is run more then once
(user-selected)

“Name” of the object
where the quantities are
stored (user-selected)

Class name
Memory address
of the object

16Diana and CUORE data production virtual bootcamp - November 16th 2020

Variables are stored as data members (see Stefano’s talk for more details)

Owner@Label.fDataMemberName = 12345

Can be either a public or private data member
accessed via a dedicated Get/Set method

Event: variable naming

17Diana and CUORE data production virtual bootcamp - November 16th 2020

QBaseType are re-implementations of int, double, float, etc… and only have the fValue data member
that contains the variable value

Owner@Label.fValue = 0.1e+2

QBool are a re-implementation of bool, Label is always Passed

Owner@Passed.fValue = 1/0

Event: variable naming

18Diana and CUORE data production virtual bootcamp - November 16th 2020

Module: concept

19Diana and CUORE data production virtual bootcamp - November 16th 2020

● A MODULE is the entity that performs operations on the event.

● Are usually linked into sequences (see later)

● The operation can be:

○ Read an event

○ Calculate some quantity to be added to the
event, or to be used in a following step of the
sequence

○ Decide whether an event should undergo the
following operations or not

○ Write the event with the new quantities added

Reader

Module

Filter

Writer

Module: READER

20Diana and CUORE data production virtual bootcamp - November 16th 2020

● Read the event from an input file

● Its behavior is defined by the following list of instructions:

Common to all types of module

${VARIABLE} are passed from
the command line with -V option

Whether all the QTrees already in the event should be loaded,
useful if AppendToInput = false is selected in the Writer

Module: MODULE

21Diana and CUORE data production virtual bootcamp - November 16th 2020

● Calculates quantities based on:
○ other quantities already present in the event or calculated by previous modules
○ the waveform associated to a given event

● Can also perform operations (filtering) on the waveform itself, creating a filtered version
of it

● The new event-specific quantities are stored in the event

● Can read (write) additional global (not event-specific) information from (to):

○ file (txt, root, etc…)
○ DB

● Usually needs some input parameters provided by the user

Module: MODULE example

22Diana and CUORE data production virtual bootcamp - November 16th 2020

● Its behavior is defined by a list of instructions like:

Name of the module

Module specific options, can be location of
input/output files, booleans options, numerical
values of parameters, etc...

Module: FILTER

23Diana and CUORE data production virtual bootcamp - November 16th 2020

● Decide whether an event should undergo the following steps of the DP

● Acts as a GATE for the single events

● The decision is taken based on quantities contained in the event

● “Thresholds” are typically passed via configuration or external files or DB

● The quantity calculated is a QBool that can be:

○ saved to the event (the result of the filter can be used by following sequences and
high level analysis) (WriteResult option)

○ used by following modules and then ditched (Save option)

Module: FILTER

24Diana and CUORE data production virtual bootcamp - November 16th 2020

● Multiple modules can be combined with logical operations:

○ CASE resets all the previous filters

○ AND

○ OR

● One “special” filter (MFilterResult) is used to recover and reapply the result of a
previously calculated filter (or combination of filters) that was saved (same sequence)
or written to the event (different sequence)

Module: FILTER example

25Diana and CUORE data production virtual bootcamp - November 16th 2020

● Typical instructions for a filter:

Name of the filter

Logic operation with previous filters

Filter specific options

Owner’s extra label in case a filter
is calculated more than once

Whether the filter result should be
memorized within the sequence

Whether the result should be
written into the event

Module: WRITER

26Diana and CUORE data production virtual bootcamp - November 16th 2020

● Write new quantities into the output file

● Every reader creates a new QTree named qtree_NameOfSequence with branches
corresponding to the objects created by the modules

● By default the new qtree_NameOfSequence is dumped to a new root file

● If AppendToInput option is set to true, the new qtree_NameOfSequence is written into
the original input file and becomes a friend of the original qtree

● Can ditch from the output events that don’t pass the last series of filters

● Defines the structure of the output file names

Module: WRITER

27Diana and CUORE data production virtual bootcamp - November 16th 2020

● NB: Aliases can be defined (and added to the qtrees):

○ shortcut to a given data member of a given object

○ simple name to be used instead of the full Owner@Label.fDataMember name
when using dianagui (see Guido’s talk)

○ defined in a text file

● NB2: in principle a Writer is not always required in a sequence (the Reader is):

○ not needed if only “global” (non event-specific) information is calculated

○ not needed if output only to ancillary file or DB

Module: WRITER example

28Diana and CUORE data production virtual bootcamp - November 16th 2020

● Typical set of instructions for a Writer

File naming and
description of the qtree

File with definition of
aliases

Whether events that are filtered before getting to the
writer should be removed from the output tree

Whether the output file should be merged
with input and trees made friends

Sequence: concept

29Diana and CUORE data production virtual bootcamp - November 16th 2020

● A SEQUENCE is a collection of MODULES that need to be executed sequentially on
each event

● Typically a sequence collects operations that are conceptually connected, for example
all the modules and filters that are needed to build and apply a given filter to the
waveform, to stabilize the gain, to calibrate, etc...

● The first module must always be a Reader
● The order of the operations is defined by a CONFIGURATION FILE (*.cfg)
● The config file collects the instructions previously described for the different types of

modules
● A sequence can run on any subset of data:

■ run, dataset
■ tower, whole detector
■ any combination of the previous

Sequence: example

30Diana and CUORE data production virtual bootcamp - November 16th 2020

● Let’s imagine a dummy sequence that should do the following (almost non-sense, but we don’t care here):

○ select any event with:

■ only one pulse in each triggered window

■ which is not in a BadInterval

■ pulse amplitude between 0 and 1000

■ pulse highest point falls between sample 2500 and 3500

○ now apply the optimum filter but with different templates depending whether the

signal is from particle (Signal) or from the pulser (Heater)

31Diana and CUORE data production virtual bootcamp - November 16th 2020

Sequence: example

32Diana and CUORE data production virtual bootcamp - November 16th 2020

● Let’s strip all the module-specific parameters from the configuration file

33Diana and CUORE data production virtual bootcamp - November 16th 2020

The OF is applied
only to “good
events” && “Signal”

The OF is applied
only to “good
events” && “Heater”

F1 && F2 && F3
&& F4

F1

F2

F3

F4

Reset previous filters F5 and re-applies the
result of F4, i.e. F1 && F2 && F3 && F4

All events are
written to the file,
also those that didn’t
pass the last filter

A new file is created
with only the qtree from
these sequenceF5

F6

F4*

Sequence: example

34Diana and CUORE data production virtual bootcamp - November 16th 2020

● Eventually we have:

○ OF with the signal template is applied to events passing F1 && F2 && F3 && F4

&& F5

○ OF with heater template is applied to events passing F4* && F6

○ F5 and F6 are written into the event

● IMPORTANT: quantities (objects) calculated by modules are present also in events that

don’t pass the filters (e.g. noise events, events with multiple puses, amplitude > 1000,

etc…), but these objects will have a VALIDITY FLAG set to FALSE

Sequence: example

35Diana and CUORE data production virtual bootcamp - November 16th 2020

● Once the sequence is defined, we have to submit a corresponding diana job.
● All the ${VARIABLE} in the config file must be passed from the CL
● For a complete list of diana options diana -h

diana -C cfg/mysequence.cfg -V VAR1 value1 -V VARN valueN

Official Data Production

36Diana and CUORE data production virtual bootcamp - November 16th 2020

● Official data production is performed in 2 steps:
○ online DP: minimal set of sequences to check data quality and give feedback to

Detector Operation (noise anomalies, calibration compatibility, stabilization issues,
etc…)

○ offline reprocessing:
■ retrigger all dataset with Optimum Trigger to lower the thresholds
■ run more sequences to calculate additional and more refined quantities:

● multiple amplitude estimators
● multiple gain stabilization methods
● selection of best amplitude estimator
● coincidences with delay synchronization → creation of multiplets of events
● pulse shape analysis

Official Data Production: ONLINE

37Diana and CUORE data production virtual bootcamp - November 16th 2020

● preprocess_RUN_TOWER

● average_pulses_DATASET_TOWER

● average_noise_power_spectra_DATASET_TOWER

● amplitude_RUN_TOWER

● stabilization_discontinuities_RUN_TOWER

● stabilization_baseline_correction_RUN_TOWER

● calibration_heaterTGS_DATASET_TOWER

● energy_RUN_TOWER

● blinding_RUN_TOWER

basic quantities and filters

ingredients for Optimum
Filter

stabilization of thermal gain

apply OT

calculate calibration
coefficients (initial
calibration only) and apply

blind ROI

Official Data Production: REPROCESSING

38Diana and CUORE data production virtual bootcamp - November 16th 2020

● Offline reprocessing is performed at the end of each dataset, exploiting both initial and

final calibration and all bkg runs to build the OF and calculate calibration coefficients

● Sequences tend to evolve when new algorithms are developed

● Latest version of the procedure (as well as previous ones) is detailed at

http://wiki.wlab.yale.edu/cuore/SoftwareComputing/Spring2020_reprocessing

Q&A

39Diana and CUORE data production virtual bootcamp - November 16th 2020

