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电磁势作用下介观环中的电子输运



Three important themes in twenty century physics

Quantization, symmetry, and phase factor
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Apply electromagnetic potentials to mesoscopic loops

A few important effects in electron transport

Main characteristics involves in conductance oscillation



§1 Gauge Transformation of Electronic Wavefunctions

Invariance of gauge transformation, one type of symmetry, 

related to electronic wavefunctions gauge, Weyl, 1918

Two equivalent schemes for describing 

electromagnetic fields 

magnetic field B and electric field E

or vector potential A and scalar potential 

Both schemes are related by

The relation is not one to one correspondence
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H. Weyl (1885–1955)



An arbitrary scalar function (r, t) satisfies

The new A and φ give the same B and E

(2) is a gauge transformation, physical quantities invariant

In classical electrodynamics, fields alone are enough 

vector and scalar potentials aid to convenience

For same B and E, A and φ are not unique

Additional restriction, gauge condition, introduced

Two types of gauges are often used:

Coulomb gauge ∇ · A = 0 and Lorentz gauge ∇ · A+/t=0
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In quantum theory, the electromagnetic potentials play a more 

significant role as in the study of Landau levels

Go further to discuss the deep meaning of electromagnetic potentials

The Hamiltonian for a single electron

electromagnetic potential A, φ, other scattering potential V (r)

Gauge invariance comes from the fact that wavefunction comprises 

two parts, i.e., amplitude and phase
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To examine the time-dependent Schrödinger equation for an electron

when the external potentials transformed as (2), the wavefunction 

correspondingly transformed like

then the Schrödinger equation (4) keeps invariant in its form, except 

an additional phase factor in the wavefunction
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(2) is called the second, or local, gauge transformation,

as Λ is a spatial function

However, when Λ is a constant, it is called the first, or global,

gauge transformation

Electromagnetic potential (A, φ) is one of the gauge fields
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§2 Magnetic Aharonov-Bohm Effect

First, consider only A there

r can be related to 0r with A = 0

A can affect electronic behavior, even though there is no 

classical field B in the path where electron passed

Aharonov-Bohm (AB) effect, Phys. Rev. 115, 485 (1959)

Aharonov and Bohm's experimental scheme, Fig. 1
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Figure 1 Schematic picture for 

the Aharonov-Bohm effect.



A double slits experiment for an electron beam
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The electron density on the screen

is the magnetic flux of the solenoid, and 0=hc/e



(i) no magnetic field,  Φ= 0

(9) gives an electron interference pattern

(ii) increase flux, Φ≠ 0

interference fringes move periodically with the period 0 

a quantum effect from modulation of phase factor by A

In quantum level, A is a real entity

AB effect displays the geometric phase which comes from 

adiabatic cyclic evolution of microscopic particle

M. V. Berry, Proc. Roy. Soc. London, Ser. A 392, 45 (1984)
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AB effect was used to check the quantized frozen magnetic flux 

in superconducting hollow cylinder 

the basic magnetic flux quantum is hc/2e due to Cooper pair
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Experimental verification of AB effect in free space

Chambers in 1960 and Tonomura et al. in 1982

What will happen in metals?

Is there phase coherence for diffusion motion?

Elastic scattering and inelastic scattering

In mesoscopic metal rings, the AB effect could be observed



Wave nature of an electron gives rise to interference

The resistance of a ring is low or high

for constructive or destructive interference

Two coherent electron beams in medium suffering multi-scatterings 

Incident beams at origin

In elastic scattering case, E has no change,

but collision phase shifts α1, α2 may appear
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Wavefunctions on the screen
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interference term

(α1 α2) is related to the elastic scatterers
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In inelastic scattering case, E is changed
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interference term

time average → zero

Conclusion is only elastic scattering keeps phase coherence

In a small metal loop with a flux Φ, (12) becomes



AB effect in metal rings

Typically τin = 10−11 s at 1 K, vF = 108 cms−1, lin = vF · τin ≈ 105 Å

Distance without losing its phase memory is about 10 μm = 105 Å

With the development of micro-fabrication technique 

periodic oscillation of resistance in a gold ring enclosing 

a magnetic flux, as shown in Fig. 2, R. A. Webb et al. in 1985

A gold ring with an inside diameter of ∼ 8000 Å and 

a width ∼ 400 Å
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Figure 2 Aharonov-Bohm effect in a gold ring. (a) Oscillation in the mag-

netoresistance as a function of magnetic field; (b) Fourier transform of the data 

in (a).
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Figure 3 Quantum interference in Cu nanoring by Häussler and Löhneysen. 
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T=20 mK
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§3 Electrostatic Aharonov-Bohm Effect

The contribution of  to phase of electronic wavefunction

An electrostatic potential will accumulates a phase

Potential difference for changing the relative phase by 2π is 

=h/eτ 

τ is the shorter of the time for electron traveling

through the device and the phase coherence time τin
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The combined influence of electrostatic and magnetic potentials 

on electron waves

Washburn et al. in 1987 investigated the effect of a transverse 

electric field on the magnetic Aharonov-Bohm oscillations

in Fig. 4, the loop is 0.82 μm on a side and d ≃0.075 μm thick

A little doubt about it, due to difficulty to apply

a well defined voltage difference across the ring
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Figure 4 Electrostatic Aharonov-Bohm effect. (a) A square Sb loop placed 

between two metal electrodes; (b) when an electric field is established between the 

electrodes the phase of the magnetoresistance oscillations can be changed by 180◦.
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Later on, a new measurement was made on a metal ring 

That was interrupted by two small tunnel junctions 

to confirm the electrostatic effect more convincingly

van Oudenaarden et al., Nature in 1998

Two periods in the measurement of transport properties:

(i) period of magnetic Aharonov-Bohm effect Φ to hc/e

(ii) period of electrostatic Aharonov-Bohm effect V L2/D to h/e

V and L are potential difference and distance between 

two tunnel barriers, and D is diffusion coefficient
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§4 Altshuler-Aronov-Spivak Effect

In Fig. 2(b), first peak is from AB oscillation with period hc/e

another oscillation with period hc/2e, AAS effect

Weak localization, or backscattering, conductance decreases 

Altshuler, Aronov, and Spivak, 1981

Here Φ is enclosed by a loop, the phases along the paths

in positive and negative directions are Δ1 and Δ2

the phase difference of two partial waves is Δ1 − Δ2

Round the paths twice, Δ1−Δ2=2Φ
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Interference term with period hc/2e

AAS effect was confirmed by experiment by Sharvins’ in 1981

Resistance of a hollow thin-walled metal cylinder, in Fig. 5

In general cases, total electrical resistance R(H) of 

a small two-lead metal loop threaded by a flux Φ
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Figure 5 Magnetic field dependence of resistance 

measured in Li cylinder.



In

the phase change due to magnetic flux is

The cases for Φ and Φ + n0 are indistinguishable

The circumference L plays the role of a unit cell

a one-one correspondence between 2πΦ/0 and kL

Total energy E will be flux dependent

02    =   (19)
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§5 Persistent Currents
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Stationary Schrödinger equation from (4) with =0

V (x) is the scattering potential, V (x) = 0 for an ideal ring

a plane wave solution

the periodic condition
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Wavenumber k = 2πn/L, eigenenergy in (22) is

If V (x) is a weak scattering potential, in NFE approximation

a one-dimensional energy band structure 

with gaps is obtained, in Fig. 6

First Brillouin zone (− 0 /2) < Φ < 0 /2

M. Büttiker et al., Phys. Lett. A 

96, 365 (1983)
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Figure 6 Energy diagram with 

dependence of flux in metallic ring.



Quantum coherence → persistent currents in mesoscopic rings

Flux-dependent currents, periodic function of 0

For an isolated ring with N electrons

Different persistent current for odd or even N
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Figure 7 Persistent current in a period of the magnetic flux. The chemical 

potential is fixed, the number of electrons in the ring is (a) odd and (b) even.



To consider free electrons with an impurity, V (x) =γδ(x)

choose a reduced parameter

weak- and strong-coupling regimes  * and  *

Figure 8, I-Φ characteristics at T = 0 for odd N
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Figure 8 Effect on the persistent 

current of a single δ-function 

impurity of strength γ/ γ ∗ = 0, 

0.5, 1, 2, 4, and 8 in a ring with 

an odd number of electrons.
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For a time-dependent flux Φ, an induced electromotive force

In the case U is pure d.c. → Bloch oscillation for the electrons

occupying the bands in Fig. 6, the equation of motion

frequency is
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§6 Simple Summary

A mesoscopic metallic ring applied by 

electromagnetci potentials shows 

quantization, phase factor and symmetry, 

simultaneously, expressing 

Three important themes in twenty century physics

Quantization, symmetry, and phase factor
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Thank You!
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