

Quantum kinetic theory and spin polarization for Dirac fermions

Yu-Chen Liu Fudan University

Collaborators: Kazuya Mameda, Xu-Guang Huang

October 30, 2019

Table of contents

Introduction and motivations

Wigner function and quantum kinetic theory

Spin polarization

Summary and outlook

Introduction and motivations

From Boltzmann equation to quantum kinetic equation

Classical kinetic theory: Boltzmann equation

$$(\partial_t + \dot{\mathbf{x}} \cdot \partial_{\mathbf{x}} + \dot{\mathbf{p}} \cdot \partial_{\mathbf{p}}) f = C[f].$$
(1)

► EM field: Einstein-Vlasov equation

$$\delta(p^2 - m^2)p^{\mu}[\partial_{\mu} - F_{\mu\nu}\partial_{p}^{\nu}]f = 0.$$
⁽²⁾

• quantum kinetic theory: spin effect in $O(\hbar)$.

- Chiral fermions: spin parallel to momentum. Berry curvature: ^p/_{2|n|²}.
- Massive fermions: New degrees of freedom for spin direction.
- Spin evolution equation.

Ref:

Chiral kinetic theory: Stephanov, Yin. 2012; Son, Yamamoto. 2013; Hidaka, Pu, Yang. 2017; Huang, Shi, Jiang, Liao, Zhuang. 2018; Gao, Liang, Wang, Wang. 2018; Liu, Gao, Mameda, Huang. 2019.

Massive kinetic theory: Weickgenannt, Sheng, Speranza, Wang, Rischke. 2019; Gao, Liang. 2019; Hattori, Hidaka, Yang. 2019; Wang, Guo, Shi, Zhuang. 2019.

Introduction and motivations

Spin polarization

- Spin polarization is one of important probes in experimental physics to study the nuclear matter in heavy ion collisions.
- Spin polarization can be induced by vorticity ω and magnetic field B.(Liang, Wang. 2006; Becattini, Piccinini, Rizzo. 2008; Kharzeev, McLerran, Warringa. 2008.)
- Pauli-Lubanski vector with momentum \hat{P}_{ν}^{C} and spin operator $\hat{\mathcal{S}}_{\rho\sigma}^{C}$ (Ryder. QFT. 1996.)

$$\hat{\mathscr{W}}^{\mu}_{\mathcal{C}} \equiv -\epsilon^{\mu\nu\rho\sigma} \hat{\mathcal{P}}^{\mathcal{C}}_{\nu} \hat{\mathcal{S}}^{\mathcal{C}}_{\rho\sigma} \tag{3}$$

We can introduce the investigation of spin effects into nonequilibrium state via quantum kinetic theory.

Wigner function and quantum kinetic theory

Wigner operator in curved spacetime

Wigner operator

$$\hat{W}_{\alpha\beta}(x,p) \equiv \int \frac{\sqrt{-g}d^4y}{(2\pi)^4} e^{-ip \cdot y/\hbar} \left[\bar{\psi}(x)e^{1/2y \cdot \overleftarrow{D}}\right]_{\beta} \left[e^{-1/2y \cdot D}\psi(x)\right]_{\alpha}.$$
 (4)

Where the derivative $\overleftarrow{D}_{\mu}(D_{\mu})$ acting to the left(right).

- We emphasize that x in equation (4) is the coordinate of point(P) in curved spacetime, and y is vector in the tangent space of point P, and p is vector in cotangent space of P.
- Horizontal lifted covariant derivatives (Winter. 1985; Calzetta, Habib, Hu. 1988; Fonarev. 1994)

$$D_{\mu} \equiv \nabla_{\mu} - \Gamma^{\lambda}_{\mu\nu} y^{\nu} \frac{\partial}{\partial y^{\lambda}} + \Gamma^{\lambda}_{\mu\nu} p_{\lambda} \frac{\partial}{\partial p_{\nu}} + \Gamma_{\mu} + \frac{i}{\hbar} A_{\mu} , \qquad (5)$$

$$\overleftarrow{D}_{\mu} \equiv \overleftarrow{\nabla}_{\mu} - \frac{\overleftarrow{\partial}}{\partial y^{\lambda}} \Gamma^{\lambda}_{\mu\nu} y^{\nu} + \overleftarrow{\partial}_{\partial p_{\nu}} \Gamma^{\lambda}_{\mu\nu} p_{\lambda} - \Gamma_{\mu} - \frac{i}{\hbar} A_{\mu}, \qquad (6)$$

where ∇_{μ} is the usual covariant derivative operator, A_{μ} is gauge field, $\Gamma_{\mu} \equiv -\frac{i}{4} \omega_{\mu}^{ab} \sigma_{ab}$ is spin connection with $\sigma_{ab} = \frac{i}{2} [\gamma_a, \gamma_b]$ and ω_{μ}^{ab} the vierbein connection.

• Vierbein: $e^a = e^a_\mu \partial^\mu$.

Dynamic equation for Wigner function

Up to $O(\hbar^2)$ order

$$\begin{bmatrix} \gamma^{\mu} \left(\Pi_{\mu} + \frac{i\hbar}{2} \Delta_{\mu} \right) - m \end{bmatrix} \hat{W} = \frac{i\hbar^2}{32} \gamma^{\mu} R_{\mu\alpha\rho\sigma} \left[\partial_{\rho}^{\alpha} \hat{W}, \sigma^{\mu\nu} \right] \\ - \frac{\hbar^3}{8 \times 4!} (\nabla_{\beta} R_{\mu\alpha\rho\sigma}) \gamma^{\mu} \left[\partial_{\rho}^{\alpha} \partial_{\rho}^{\beta} \hat{W}, \sigma^{\rho\sigma} \right]$$
(7)

with

$$\begin{aligned} \Pi_{\mu} &= p_{\mu} - \frac{\hbar^{2}}{12} (\nabla_{\rho} F_{\mu\nu}) \partial_{\rho}^{\nu} \partial_{\rho}^{\rho} + \frac{\hbar^{2}}{24} R^{\rho}{}_{\sigma\mu\nu} \partial_{\rho}^{\sigma} \partial_{\rho}^{\nu} p_{\rho} + \frac{\hbar^{2}}{4} R_{\mu\nu} \partial_{\rho}^{\nu} ,\\ \Delta_{\mu} &= D_{\mu} - F_{\mu\lambda} \partial_{\rho}^{\lambda} - \frac{\hbar^{2}}{12} (\nabla_{\rho} R_{\mu\nu}) \partial_{\rho}^{\rho} \partial_{\rho}^{\nu} - \frac{\hbar^{2}}{24} (\nabla_{\lambda} R^{\rho}{}_{\sigma\mu\nu}) \partial_{\rho}^{\nu} \partial_{\rho}^{\sigma} \partial_{\rho}^{\lambda} p_{\rho} \qquad (8) \\ &+ \frac{\hbar^{2}}{8} R^{\rho}{}_{\sigma\mu\nu} \partial_{\rho}^{\nu} \partial_{\rho}^{\sigma} D_{\rho} + \frac{\hbar^{2}}{24} (\nabla_{\alpha} \nabla_{\beta} F_{\mu\nu} + 2R^{\rho}{}_{\alpha\mu\nu} F_{\beta\rho}) \partial_{\rho}^{\nu} \partial_{\rho}^{\alpha} \partial_{\rho}^{\beta} , \end{aligned}$$

where $R^{\mu}_{\ \nu\rho\sigma}$ is Riemann curvature and $R_{\mu\nu}$ is Ricci tensor.

Decomposition of Wigner function

$$W = \frac{1}{4} [\mathcal{F} + i\gamma^5 \mathcal{P} + \gamma^\mu \mathcal{V}_\mu + \gamma^5 \gamma^\mu \mathcal{A}_\mu + \frac{1}{2} \sigma^{\mu\nu} \mathcal{S}_{\mu\nu}]. \tag{9}$$

The constraints for the decomposed coefficients

$$\Delta_{\mu}\mathcal{V}^{\mu} = \frac{\hbar^2}{24} (\nabla_{\eta}R_{\mu\nu})\partial^{\nu}_{\rho}\partial^{\eta}_{\rho}\mathcal{V}^{\mu}, \qquad \hbar\Delta_{\mu}\mathcal{A}^{\mu} = -2m\mathcal{P}, \tag{10}$$

$$\Pi_{\mu}\mathcal{V}^{\mu} - m\mathcal{F} = \frac{\hbar^{2}}{8}R_{\mu\nu}\partial_{\rho}^{\nu}\mathcal{V}^{\mu}, \qquad \Pi_{\mu}\mathcal{A}^{\mu} = \frac{\hbar^{2}}{8}R_{\mu\nu}\partial_{\rho}^{\nu}\mathcal{A}^{\mu}, \qquad (11)$$
$$\Pi_{\mu}\mathcal{F} - m\mathcal{V}_{\mu} = \frac{\hbar}{2}\Delta^{\nu}\mathcal{S}_{\nu\mu}, \qquad \Pi_{\mu}\mathcal{P} = -\frac{\hbar}{4}\epsilon_{\mu\nu\rho\sigma}\Delta^{\nu}\mathcal{S}^{\rho\sigma}, \qquad (12)$$

$$\hbar\Delta_{[\mu}\mathcal{V}_{\nu]} - \epsilon_{\mu\nu\rho\sigma}\Pi^{\rho}\mathcal{A}^{\sigma} = m\mathcal{S}_{\mu\nu} - \frac{\hbar^2}{16}\epsilon_{\mu\nu\alpha\beta}R^{\alpha\beta\rho\sigma}\partial^{\rho}_{\rho}\mathcal{A}_{\sigma}, \qquad (13)$$

$$\hbar\Delta_{[\mu}\mathcal{A}_{\nu]} - \epsilon_{\mu\nu\rho\sigma}\Pi^{\rho}\mathcal{V}^{\sigma} = -\frac{\hbar^2}{16}\epsilon_{\mu\nu\alpha\beta}R^{\alpha\beta\rho\sigma}\partial^{\rho}_{\rho}\mathcal{V}_{\sigma}, \qquad (14)$$

$$\frac{\hbar}{2}\Delta_{\mu}\mathcal{F} - \Pi^{\nu}\mathcal{S}_{\mu\nu} = -\frac{\hbar^2}{16}R_{\mu\nu\rho\delta}\partial^{\nu}_{\rho}\mathcal{S}^{\rho\delta} - \frac{\hbar^2}{8}R^{\rho\nu}\partial^{\rho}_{\nu}\mathcal{S}_{\rho\mu}, \quad (15)$$

$$\frac{\hbar}{2}\Delta_{\mu}\mathcal{P} - \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}\Pi^{\nu}\mathcal{S}^{\rho\sigma} = m\mathcal{A}_{\mu} - \epsilon_{\mu\sigma\delta\lambda}\frac{\hbar^{2}}{8}R_{\rho}^{\ \sigma\lambda\nu}\partial_{\nu}^{p}\mathcal{S}^{\rho\delta}.$$
 (16)

with $X_{[\mu}Y_{\nu]} \equiv \frac{1}{2}(X_{\mu}Y_{\nu} - X_{\nu}Y_{\mu}).$

Solutions up to $O(\hbar)$

- \mathcal{P} , \mathcal{F} and $\mathcal{S}^{\mu\nu}$ can be expressed by \mathcal{V}^{μ} and \mathcal{A}^{μ} .
- In classical limit $\hbar \to 0$

$$\mathcal{V}^{\mu}_{(0)} = 4\pi p^{\mu} f^{(0)} \delta(p^2 - m^2), \qquad (17)$$

$$\mathcal{A}^{\mu}_{(0)} = 4\pi \mathscr{A}^{\mu}_{(0)} \delta(p^2 - m^2), \qquad (18)$$

with $p_{\mu} \mathscr{A}^{\mu}_{(0)} \delta(p^2 - m^2) = 0.$

• In $O(\hbar)$, we can write $\Delta_{\mu} = \nabla_{\mu} + (-F_{\mu\lambda} + \Gamma^{\nu}_{\mu\lambda}p_{\nu})\partial_{p}^{\lambda}$

$$\mathcal{V}_{(1)}^{\mu} = 4\pi\hbar \left\{ \left(p^{\mu} f^{(1)} + \frac{1}{2p \cdot n} \epsilon^{\mu\nu\rho\sigma} n_{\nu} \Delta_{\rho} \mathscr{A}_{\sigma}^{(0)} \right) \delta(p^{2} - m^{2}) \right. \\ \left. + \widetilde{F}^{\mu\nu} \left(\mathscr{A}_{\nu}^{(0)} - \frac{p \cdot \mathscr{A}^{(0)}}{p \cdot n} n_{\nu} \right) \delta'(p^{2} - m^{2}) \right\},$$
(19)

$$\mathcal{A}^{\mu}_{(1)} = 4\pi\hbar \{ \mathscr{A}^{\mu}_{(1)} \delta(p^2 - m^2) + \widetilde{F}^{\mu\nu} p_{\nu} f^{(0)} \delta'(p^2 - m^2) \},$$
(20)

where n^{μ} is a unit timelike frame vector, and we have $p_{\mu}\mathscr{A}^{\mu}_{(1)}\delta(p^2-m^2)=0.$

• Rewrite $\mathscr{A}^{\mu}_{(0)} = \mathscr{A}^{\mu}_{(0)\perp} + p_{\mu}f_5^{(0)}$, where $p_{\mu}\mathscr{A}^{\mu}_{(0)\perp} = 0$.

The chiral case: m = 0

Solutions

$$\mathcal{R}^{\mu}/\mathcal{L}^{\mu} = 4\pi \left\{ \left[p^{\mu} f_{R/L} \pm \hbar \Sigma_{n}^{\mu\nu} \Delta_{\nu} f_{R/L} \right] \delta(p^{2}) \\ \pm \hbar \widetilde{F}^{\mu\nu} p_{\nu} f_{R/L} \delta'(p^{2}) \right\},$$
(21)

where $\mathcal{R}^{\mu}/\mathcal{L}^{\mu} \equiv \frac{1}{2}(\mathcal{V}^{\mu} \pm \mathcal{A}^{\mu})$, and $\sum_{n}^{\mu\nu} = \frac{1}{2\rho \cdot n} \epsilon^{\mu\nu\rho\sigma} p_{\rho} n_{\sigma}$ is the spin tensor for chiral fermion.

Chiral kinetic theory in curved spacetime

- Chiral magnetic effect
- Chiral vortical effect
- rotating frame
- Dr. Kazuya Mameda's talk, Oct. 31.

The massive case: $m \neq 0$

The massive case $m \neq 0$

We have
$$f_5^{(0)}\delta(p^2-m^2)=0$$
 and $\mathcal{A}^{\mu}_{(0)}=4\pi\mathscr{A}^{\mu}_{(0)\perp}\delta(p^2-m^2).$

Remove the frame vector n^{μ} from the kinetic theory:

Redefinition of the scalar distribution

$$f^{(1)} \to f^{(1)} + \frac{1}{2m^2 \rho \cdot n} \epsilon^{\mu\nu\rho\sigma} p_{\mu} n_{\nu} \Delta_{\rho} \mathscr{A}^{(0)}_{\perp\sigma}, \qquad (22)$$

 n^{μ} is removed from the kinetic theory.

► The redefinition of $f^{(1)}$ is equivalent to identifying the frame n^{μ} as the particle's rest frame $n^{\mu} = \frac{p^{\mu}}{m}$.

Solutions up to $O(\hbar)$

• Massive case $m \neq 0$, we define $m\theta^{\mu}f_A \equiv \mathscr{A}^{\mu}_{(0)\perp} + \hbar \mathscr{A}^{\mu}_{(1)\perp}$, with $p^{\mu}\theta_{\mu} = 0$:

$$\mathcal{V}^{\mu} = 4\pi \left\{ p^{\mu} f \delta(p^2 - m^2) + m\hbar \widetilde{F}^{\mu\nu} \theta_{\nu} f_A \delta'(p^2 - m^2) + \frac{\hbar}{2m} \epsilon^{\mu\nu\rho\sigma} p_{\nu} \Delta_{\rho} (\theta_{\sigma} f_A) \delta(p^2 - m^2) \right\}, \qquad (23)$$

$$\mathcal{A}^{\mu} = 4\pi \{ m\theta^{\mu} f_{A} \delta(p^{2} - m^{2}) + \hbar \widetilde{F}^{\mu\nu} p_{\nu} f \delta'(p^{2} - m^{2}) \},$$
(24)

where $\sum_{S}^{\mu\nu} = \frac{1}{2m} \epsilon^{\mu\nu\rho\sigma} \theta_{\rho} p_{\sigma}$ is the spin tensor for massive fermion.

• \mathcal{P} , \mathcal{F} and $\mathcal{S}^{\mu\nu}$ can be expressed by \mathcal{V}^{μ} and \mathcal{A}^{μ} .

Quantum kinetic theory for massive fermions

$$\Delta_{\mu}\mathcal{V}^{\mu}=0, \qquad p\cdot\Delta\mathcal{A}_{\mu}=\mathcal{F}_{\mu\nu}\mathcal{A}^{\nu}+\frac{\hbar}{2}\epsilon_{\mu\nu\rho\sigma}\Delta^{\nu}\Delta^{\rho}\mathcal{V}^{\sigma}.$$

Two independent scalar kinetic equations

$$0 = \delta(\rho^{2} - m^{2} \mp \hbar \Sigma_{S}^{\alpha\beta} F_{\alpha\beta}) \\ \times \left\{ \left[\rho^{\mu} \Delta_{\mu} \pm \frac{\hbar}{2} \Sigma_{S}^{\mu\nu} \left(\nabla_{\rho} F_{\mu\nu} \partial_{\rho}^{\rho} + [D_{\mu}, D_{\nu}] \right) \right] f_{\uparrow/\downarrow} \\ + \frac{\hbar}{2} (f_{\uparrow} - f_{\downarrow}) \left(\nabla_{\rho} F_{\mu\nu} \partial_{\rho}^{\rho} + [D_{\mu}, D_{\nu}] \right) \Sigma_{S}^{\mu\nu} \right\}.$$
(26)

where $f_{\uparrow/\downarrow} \equiv \frac{1}{2} (f \pm f_A)$. Spin evolution equation

$$p \cdot \Delta \theta^{\mu} \delta(p^{2} - m^{2})$$

$$= F^{\mu\nu} \theta_{\nu} \delta(p^{2} - m^{2}) - \frac{1}{f_{A}} \theta^{\mu} (p \cdot \Delta f_{A}) \delta(p^{2} - m^{2})$$

$$+ \frac{\hbar}{2mf_{A}} \epsilon^{\mu\nu\rho\sigma} p_{\sigma} \Delta_{\nu} \Delta_{\rho} f \delta(p^{2} - m^{2}). \qquad (27)$$

Spin polarization

Spin operator and frame vector

▶ In $O(\hbar)$ we have

$$4\pi\hbar(p\cdot n)f_{5}\Sigma_{n}^{\mu\nu}\delta(p^{2}) = \operatorname{Tr}\left(\frac{\hbar}{4}\{\sigma^{\mu\nu},\gamma^{\lambda}\}n_{\lambda}W(x,p)\right),$$

$$4\pi\hbar mf_{A}\Sigma_{5}^{\mu\nu}\delta(p^{2}-m^{2}) = \operatorname{Tr}\left(\frac{\hbar}{4}\{\sigma^{\mu\nu},\gamma^{\lambda}\}n_{\lambda}W(x,p)\right)\Big|_{n^{\alpha}=\frac{p^{\alpha}}{m}}.$$
(28)

The spin current in Noether's theorem

$$\hat{\mathcal{S}}_{\mathcal{C}}^{\lambda,\mu\nu} \equiv \frac{\hbar}{4} \bar{\psi} \{ \sigma^{\mu\nu}, \gamma^{\lambda} \} \psi$$
⁽²⁹⁾

Spin operator in field theory

$$\hat{\mathcal{S}}_{C}^{\mu\nu} \equiv \hat{\mathcal{S}}_{C}^{\lambda,\mu\nu} n_{\lambda}.$$
 (30)

$$\mathcal{S}_{C}^{\mu\nu} \equiv \operatorname{Tr}\left(\frac{\hbar}{4} \{\sigma^{\mu\nu}, \gamma^{\lambda}\} n_{\lambda} W(x, p)\right).$$
(31)

Spin polarization

The Pauli-Lubanski vector

$$\mathcal{W}^{\mu}(x,p) \equiv -\frac{1}{\hbar(p \cdot n)} \epsilon^{\mu\nu\rho\sigma} p_{\nu} S^{C}_{\rho\sigma},$$

$$\Lambda^{\mu}(x) \equiv \int_{p} \mathcal{W}^{\mu}(x,p).$$
(32)

Massive fermions

$$\Lambda^{\mu}_{(m\neq 0)} = \pi \int_{p} \delta(p^{2} - m^{2}) \left(4m\theta^{\mu}f_{A} - \hbar\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}\partial^{p}_{\nu}f\right).$$
(33)

Massless fermions

$$\Lambda^{\mu}_{(m=0)} = \pi \int_{\rho} \delta(\rho^2) \left[4 \left(p^{\mu} f_5 + \hbar \Sigma^{\mu\nu}_n \Delta_{\nu} f \right) - \hbar \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} \partial^{\rho}_{\nu} f \right].$$
(34)

Equilibrium state for massive fermions

•
$$f_{\uparrow/\downarrow}^{eq} = n_F(g_{\uparrow/\downarrow})$$
 with $g_{\uparrow/\downarrow} = p \cdot \beta + \alpha_{\uparrow/\downarrow} \pm \hbar \Sigma_S^{\mu\nu} \omega_{\mu\nu}$
 $\nabla_{\mu}\beta_{\nu} + \nabla_{\nu}\beta_{\mu} = 0, \quad \nabla_{[\mu}\beta_{\nu]} - 2\omega_{\mu\nu} = 0,$
 $\alpha_{\uparrow} = \alpha_{\downarrow} = \alpha, \quad \nabla_{\mu}\alpha = F_{\mu\nu}\beta^{\nu}.$ (35)

► The spin per particle in phase space \(\pi^\mu = \mathcal{M}^\mu / f\) induced by vorticity (Becattini, Chandra, Zanna, Grossi. 2013)

$$\pi^{\mu}_{\boldsymbol{\omega}-\boldsymbol{eq}} = 4\pi\hbar\epsilon^{\mu\sigma\alpha\beta}\boldsymbol{p}_{\sigma}\nabla_{\alpha}\beta_{\beta}[1-\boldsymbol{n}_{F}(\boldsymbol{p}\cdot\boldsymbol{\beta}+\alpha)]\delta(\boldsymbol{p}^{2}-\boldsymbol{m}^{2}).$$
(36)

Spin polarization density

$$\Lambda^{\mu}_{eq} = -\pi\hbar \int_{\rho} \delta(\rho^2 - m^2) f'_{eq} \left(\epsilon^{\mu\nu\rho\sigma} p_{\nu} \nabla_{\rho} \beta_{\sigma} + \epsilon^{\mu\nu\rho\sigma} \beta_{\nu} F_{\rho\sigma} \right).$$
(37)

Equilibrium state for chiral fermions

•
$$f_{R/L}^{eq} = n_F(g_{R/L})$$
, with $g_{R/L} = p \cdot \beta + \alpha_{R/L} \pm \hbar \Sigma_n^{\mu\nu} \omega_{\mu\nu}$

$$\nabla_{\mu}\beta_{\nu} + \nabla_{\nu}\beta_{\mu} = \phi(x)g_{\mu\nu}, \qquad \nabla_{[\mu}\beta_{\nu]} - 2\omega_{\mu\nu} = 0$$
(38)
$$\nabla_{\mu}\alpha_{R} = \nabla_{\mu}\alpha_{L} = F_{\mu\nu}\beta^{\nu}.$$
(39)

Spin polarization density

$$\Lambda^{\mu}_{eq} = \pi \int_{\rho} \delta(\rho^2) f'_{eq} [2\rho^{\mu}(\alpha_R - \alpha_L) - \hbar \epsilon^{\mu\nu\rho\sigma} p_{\nu} \nabla_{\rho} \beta_{\sigma} - \hbar \epsilon^{\mu\nu\rho\sigma} \beta_{\nu} F_{\rho\sigma}].$$
(40)

Summary and outlook

Summary

- ► We have derived covariant kinetic theory up to O(ħ) order in curved spacetime.
- ► For massive fermions, the frame vector can be removed in kinetic theory.
- Spin polarization is derived from kinetic theory, and the results are available in non-equilibrium state.

Outlook

- Quantum correction for collision term.
- Simulation of the evolution of spin polarization for Dirac fermions.
- ► From quantum kinetic theory to spin hydrodynamics.

Thank you!