Study QCD Phase Diagram in High-Energy Nuclear Collisions

Νυ Χυ

Many Thanks to Organizers!

Institute of Modern Physics, CAS, Lanzhou, China Central China Normal University, China

Outline

1) Introduction

2) Selected Results from BES-I (i) Collectivity (ii) Chirality (iii)Criticality

3) **BES-II and Beyond**

STAR Detector System

Proton Identification with TOF

Published net-proton results: Only TPC used for proton/anti-proton PID. TOF PID extends the phase space coverage.

Data Sets for BES-I Program

 Largest data sets versus collision energy
 STAR: Large and homogeneous acceptance, excellent particle identification capabilities. Especially important for fluctuation analysis

Bulk Properties at Freeze-out

Chemical Freeze-out: (GCE)

- Weak temperature dependence
- Centrality dependence **µ**_B!
- LGT: **CP about** *µ_B* ≥ 500 MeV?

- The **K**+/**π** ratio peaks at $\sqrt{s_{NN}} \sim 8$ GeV where model also predicted the peak of baryon density
- **HBDR**: (√*s*_{*NN*} < 8 GeV, μ_{*B*} ≥ 420 MeV)
- ALICE: B.Abelev et al., PRL109, 252301(12); PRC88, 044910(13).
- STAR: J. Adams, et al., NPA757, 102(05); X.L. Zhu, NPA931, c1098(14); L. Kumar, NPA931, c1114(14)
- J. Randrup and J. Cleymans, Phys. Rev. <u>C74</u>, 047901(06)

The emergent properties of QCD matter

Collectivity

$$\partial_{\mu} [(\varepsilon + p)u^{\mu} u^{\nu} - pg^{\mu\nu}] = 0$$

$$\partial_{\mu} [s u^{\mu}] = 0$$

$$\frac{d^2 N}{p_T dp_T d\varphi} = \frac{1}{2\pi} \frac{dN}{p_T dp_T} \left\{ 1 + \sum_{n=1}^{\infty} 2v_n (p_T) \cos[n(\varphi - \Psi_R)] \right\}$$

- Ψ_R event-plane angle
- v_1 Directed flow; - v_2 Elliptic flow; - v_3 Triangle flow

v₁ versus Collision Energy

v₁ vs. Energy: Softest Point?

- 1) Minimum at $\sqrt{s_{NN}} = 10$ GeV for net-proton and net- Λ , but net-Kaon data continue decreasing as energy decreases
- 2) At low energy, or in the region where the net-baryon density is large, repulsive force is expected, v₁ slope is large and positive!
- 3) Softest point only for baryons? M. Isse, A. Ohnishi et al, PR <u>C72</u>, 064908(05) - Y. Nara, A. Ohnishi, H. Stoecker, PRC94, 034906(16), arXiv: **1601.07692**

Anisotropy Parameter v₂

Initial/final conditions, EoS, degrees of freedom

Partonic Collectivity at RHIC

Low $p_T (\leq 2 \text{ GeV/c})$: hydrodynamic mass ordering High $p_T (> 2 \text{ GeV/c})$: *number of quarks scaling (NCQ)*

Partonic Collectivity, necessary for QGP! De-confinement in Au+Au collisions at RHIC!

Low **η/s** for QCD Matter at RHIC

η/s ≥ 1/4π, 'perfect liquid' η/s(QCD matter) << η/s(QED matter)

STAR HFT Results: D⁰ Collectivity (v₂)

"These results suggest that charm quarks have achieved local thermal equilibrium with the medium created in such (200GeV Au+Au) collisions." STAR: Phys. Rev. Lett. **118**, 212301(2017)

QCD Phase Structure

The emergent properties of QCD matter

Criticality

Expectation from Model Calculations

Characteristic "Oscillating pattern"
is expected for the QCD critical
point but the exact shape depends
on the location of freeze-out with
respect to the location of CP
Critical Region (CR)

- M. Stephanov, *PRL107*, 052301(2011)
- V. Skokov, Quark Matter 2012
- J.W. Chen, J. Deng, H. Kohyyama, Phys. Rev. <u>D93</u> (2016) 034037

Higher Moments and Criticality

Nu Xu

- Higher moments of conserved quantum numbers:
 Q, S, B, in high-energy nuclear collisions
- 2) Sensitive to critical point (ξ correlation length):

$$\left\langle \left(\delta N \right)^2 \right\rangle \approx \xi^2, \ \left\langle \left(\delta N \right)^3 \right\rangle \approx \xi^{4.5}, \ \left\langle \left(\delta N \right)^4 \right\rangle \approx \xi^7$$

3) Direct comparison with calculations at any order:

$$S\sigma \approx \frac{\chi_B^3}{\chi_B^2}, \qquad \kappa\sigma^2 \approx \frac{\chi_B^4}{\chi_B^2}$$

 Extract susceptibilities and freeze-out temperature. An independent/important test of thermal equilibrium in heavy ion collisions.

References:

- STAR: *PRL*105, 22303(10); *ibid*, 112, 032302(14)
- S. Ejiri, F. Karsch, K. Redlich, *PLB633*, 275(06) // M. Stephanov: *PRL*102, 032301(09) // R.V. Gavai and S. Gupta, *PLB696*, 459(11) // F. Karsch et al, *PLB695*, 136(11),
- A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13) // V. Skokov et al., PRC88, 034901(13)
- PBM, A. Rustamov, J. Stachel, arXiv:1612.00702, NPA960, 114(17)

Energy Dependence of Net-p

STAR data: (0-5%) Au+Au collisions at √s_{NN} = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV net-p |y|<0.5, p_T: 0.4 – 2.0 GeV/c

Nu Xu

Higher Moments of Net-Q, -K, -p

- 1) The results of net-Q and net-Kaon show flat energy dependence
- 2) Net-p shows non-monotonic energy dependence in the most central Au+Au collisions starting at $\sqrt{s_{NN}} < 27$ GeV!

Net-proton Higher Moment

1) Non-monotonic in the most central 0-5% collisions 2) Attractive enhancement at $\sqrt{s_{NN}}$ < 20GeV!

X.F. Luo, CPOD2014, QM2015

 C_6/C_2

• QUESTION:

at $\mu_B \sim 0$, sign for smooth crossover?

Reference: B. Friman et al, Eur. Phys. J. C 71:1694(2011)

In central collisions, the ratios of C6/C2>0 and < 0 for 54.4 and 200GeV, respectively</p>

- > LQCD predictions are consistent with 200GeV central result, not trivial!
- This is qualitatively consistent with the PQM model prediction while UrQMD shows C6/C2>0 for all collisions. LQCD predictions are consistent

QCD Phase Structure

The emergent properties of QCD matter

BES-II & Beyond

STAR Detector System

2019 - 2021: BES-II at RHIC

√S _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	Weeks	μ _B (MeV)	T _{CH} (MeV)
200	350	2010		25	166
62.4	67	2010		73	165
54.4	1200	2017		90	
39	39	2010		112	164
27	70	2011		156	162
19.6	400 / 36	2019-21 / 2011	3	206	160
14.5	300 / 20	2019-21 / 2014	2.5	264	156
11.5	230 / 12	2019-21 / 2010	5	315	152
9.2	160 / 0.3	2019-21 / 2008	9.5	355	140
7.7	100 / 4	2019-21 / 2010	14	420	140

Precision measurements: map the QCD phase diagram $200 < \mu_B < 420 MeV$

QCD Critical Point

- RHIC BES-II: dramatically reduce the errors!
- CBM Experiments (2.5 < √s_{NN} < 8 GeV) : Key region for Critical Point search

STAR Data: X.F. Luo et al, CPOD2014, QM2015; PRL112 (2014) 32302

Future Facilities for Heavy Ion Collisions

Acknowledgements

P. Braun-Munzinger, X. Dong, S. Esumi, S. Gupta, HZ. Huang, XG. Huang, F. Karsch, V. Koch, JF. Liao, *F. Liu*, XF. Luo, B. Mohanty, S. Mukherjee, T. Nonaka, K. Redlich, HG. Ritter, *M. Shao*, SS. Shi, M. Stephanov, J. Stroth, *XM. Sun*, *ZY. Sun*, N. Yu, *Y. Wang, ZG. Xiao*, *L. Zhao*, PF. Zhuang

// BLUE: Theory // RED: Exp., high moment //

Thank you for your attention!