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Dynamical models for heavy-ion collisions
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Fluctuations/Correlations
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Hydrodynamics

Hadronic cascades

Initialization model

Final observables

Initial state fluctuations

Hydrodynamic fluctuations:
thermal fluctuations of 

hydrodynamics

Non-flow contributions

Jet-induced medium 
excitations

…

etc.
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Fluctuating hydrodynamics
= viscous hydrodynamics with noise terms
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Stochastic partial differential equations (SPDE)

Conservation law

Constitutive eqs.

hydrodynamic fluctuations
→ noise terms

Fluctuation-dissipation relation (FDR)
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Inhomogeneous and non-static matter
Matter created in nuclear collisions

is not static and homogeneous
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Au+Au 200GeV MC-KLN
(x-y plane)

Usual FDR relies on
the linear-response

of global equilibrium

to small perturbations

How is FDR modified in 
inhomogeneous and

non-static matter?
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Procedure (1/4)
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Define (linear-response) constitutive equation (CE)
in inhomogeneous and non-static background

Lx Γ(x) = Mx κ(x)F(x) + ξ(x)

Lx, Mx: linear operators

Γ: dissipative current κ: 1st order transport coefficient ξ: noise term

F: thermodynamic force

Step 1

πμν, Π, νμ

“Differential form of CE”

e.g. Bulk pressure 
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Procedure (2/4)

2019/10/31 7

Solve CE to obtain the integral form

Γ(x) = ∫dy G(x,y)κ(y)F(y) + δΓ(x)

Step 2

“Integral form of CE”

δΓ: integral form noise

ξ(x) = LxδΓ(x)

Obtain explicit form of memory function

G(x,y) = Lx
-1 Mx δ(x-y) = …
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Procedure (3/4)
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Use FDR based on Zubarev’s NESO
(Non-equilibrium statistical operator)

Step 3

Autocorrelation of integral form noise δΓ

〈δΓ(x)δΓ(y)〉Θ(x0-y0) = G(x,y)T(y)κ(y)

See, e.g., D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Plenum, New York, 1974),

A. Hosoya, M.-a. Sakagami, and M. Takao, Annals Phys. 154, 229 (1984).

〈δΓ(x)δΓ(y)〉 = G(x,y)T(y)κ(y) + T(y)κ(y)G(y,x)
From Step 2 From Step 2
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Procedure (4/4)
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Obtain noise autocorrelation in original CE Step 4

Autocorrelation for differential form noise δΓ

〈ξ(x)ξ(y)〉 = LxLy〈δΓ(x)δΓ(y)〉 = …
From Step 3
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E.g. Simplified Israel-Stewart
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Bulk pressure

Shear stress

Diffusion current

Defs: substantial time derivatives

Step 1 Input CE
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E.g. Simplified Israel-Stewart
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Step 2 Solve G(x,y)

Complicated tensor structure due to projection in CE
Δ(τf)

Δ(τi)

Δ(τ1)
Δ(τ2)

Δ(τN-1)

Δ(τ3)

x

t
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E.g. Simplified Israel-Stewart
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Step 4 Resulting FDR for differential form CE

Complicated… but essential structure is:
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E.g. Simplified Israel-Stewart
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Step 4 Resulting FDR for differential form CE

✓ Modification to FDR ∝ Relaxation time τR and expansion θ

Important in HIC
with the short-scale (～τR) dynamics

of rapidly expanding system
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Fluctuation theorem (FT)

Relations for probability density Pr(δS) of
entropy production δS

known in non-equilibrium statistical mechanics:
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Note: definitions of δS, δS†, Pr(δS), Pr†(δS†)
depends on systems and processes.

→many variations of FT

D. J. Evans, E. G. D. Cohen, G. P. Morriss, Phys. Rev. Lett. 71, 2401–2404 (1993)
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Fluctuation theorem (FT)
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• σ = δS/t: entropy production rate per unit time
• τR: relaxation time scale of the system

Steady
distribution A’

Steady 
distribution A

+thermal
fluctuations

Time tTime 0

(Example) Steady-state FT (SSFT)
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FT in Bjorken flow
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Let’s check the FT
in 0+1D Bjorken flow with noise terms

Steady-state FT

σ: entropy production rate

a2: variance of σ

When the distribution is Gaussian

Calculate this quantity for FT
T. Hirano, R. Kurita, KM, Nucl. Phys. A 984 (2019) 44-67
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FT in Bjorken flow: Hydro eqs

(0+1)-dim Bjorken flow
2nd order fluctuating hydro
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Conservation

Constitutive eqs. (simplified IS)

τ: proper time

Hydrodynamic 

fluctuations

Gaussian noise
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FT in Bjorken flow: FDR

(0+1)-dim Bjorken flow
2nd order fluctuating hydro
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Cell

Case 1: FDR Without modification

Case 2: FDR With modification

Modification
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FT in Bjorken flow: Result
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R ≠ 1

Case 1: Without FDR modification Case 2: With FDR modification

R ≈ 1

✓ FDR modification is needed to satisfy FT

FT largely
broken

Without FDR modification, FT is violated.

Different colors for different
T-dependence of τΠ = τπ = τR

Small breaking is due to 
non-linear evolution

(Future study)



SUMMARY
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Summary

• Fluctuation-dissipation relation (FDR) for second-
order hydro has modifications proportional to τR

in inhomogeneous and non-static systems

• Steady-state Fluctuation theorem
is broken without FDR modification.

• FDR modifications should be incorporated into 
dynamical models with finite relaxation times
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BACKUP
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Simplified Israel-Stewart eq.
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Solving the simplified Israel-Stewart equation

dissipative currents

Onsager coefficients

thermodynamic force

time derivative

projection

relaxation time

spacetime 
dependent 
projections
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Projection and transversality
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Transverse condition for dissipative currents

Projection is needed to maintain the transversality

without projection…

transversality would break if background changes (Duν ≠ 0) 
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New projection
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Projections along the pathline

pathline: the world line of a fluid particle

τ: the proper time of the fluid particle

Properties

, etc.

Δ(τf)

Δ(τi)

Δ(τ1)

Δ(τ2)

Δ(τN-1)

Δ(τ3)

x

t
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FT in high-energy nuclear collisions

Simplification

① Bjorken flow: (0+1)-dim evolution

② Linear fluctuations: no non-linear fluctuations

③ Navier-Stokes limit: negligible τR
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Qualitative understanding
under idealized assumptions

FT: generalization of FDR near the equilibrium

→ Relations to FDR in fluctuating hydrodynamics?

→ Entropy distribution through multiplicity?

T. Hirano, R. Kurita, KM, Nucl. Phys. A984 (2019) 44-67



PartX (1/1)

Hydrodynamic equations
(0+1)-dim Bjorken flow (assumption ①)

2nd order fluctuating hydro
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Conservation

Constitutive eqs.

FDR

τ: proper time

Cell

Hydrodynamic 

fluctuations

Gaussian noise

T. Hirano, R. Kurita, KM, Nucl. Phys. A984 (2019) 44-67
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Entropy production rate
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Step 2. Result of time evolution

Step 1. Def. Entropy production in a cell

s: Equilibrium entropy
V(τ): volume of the cell
τi: initial time

where

T. Hirano, R. Kurita, KM, Nucl. Phys. A984 (2019) 44-67
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Entropy production rate
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Step 3. Distribution of entropy production

Linear fluctuations (assumption ②) → Gaussian distributions

average

variance

Navier-Stokes limit (assumption ③) → Simplified expr.

✓ Expression equivalent to SSFT in expanding system

⇔→

T. Hirano, R. Kurita, KM, Nucl. Phys. A984 (2019) 44-67
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Multiplicity fluctuations
In high-energy nuclear collisions?
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Upper bound in entropy fluctuations

→ Upper bound of multiplicity fluctuations

SSFT
upper bound

Initial state 
fluctuations

Poisson

statistics

LHS: observables
RHS: initial state

→constraining initial state
independently of 

intermediate dynamics?

∵ SSFT 

∵ inequality

S: entropy
Si: initial entropy

Au+Au √sNN = 200 GeV

STAR Collaboration (RHIC)

T. Hirano, R. Kurita, KM, Nucl. Phys. A984 (2019) 44-67


