Zilch currents and chiral kinetic theory for vector particles

Enrico Speranza

In collaboration with

Xu-Guang Huang, Pavel Mitkin and Andrey Sadofyev

Work in progress

Bundesministerium für Bildung und Forschung

New development of hydrodynamics and its applications in Heavy-Ion Collisions Fudan University, Shanghai, October 31, 2019

1 / 14

- > Zilch currents: gauge-invariant measure of helicity separation
- Zilch Vortical Effect
 - Chiral kinetic theory
 - Wigner function for spin-1 particles
- Conclusions

Chiral Vortical Effect for fermions

$$J^{\mu}_{R/L} = \pm \left(\frac{T^2}{12} + \frac{\mu^2_{R/L}}{4\pi^2}\right) \omega^{\mu}$$

Kharzeev, Liao, Voloshin, Wang, Prog. Part. Nucl. Phys. 88, 1 (2016)

- Vilenkin PRD 21, 2260 (1980)
- ► Chiral kinetic theory: Berry phase ⇒ Chiral anomaly and CVE Son, Yamamoto, PRL 109, 181602 (2012): Stephanov, Yin, PRL 109, 162001 (2012)

Wigner function

e.g. Chen, Pu, Q. Wang and X. N. Wang, PRL 110, no. 26, 262301 (2013) Hidaka, Pu, Yang, PRD 95, no. 9, 091901 (2017);

Connection to gravitational anomaly

Landsteiner, Megias, Melgar, Pena-Benitez, JHEP 1109, 121 (2011) Flachi, Fukushima, PRD 98, no. 9, 096011 (2018)

Anomalous hydrodynamics

Son, Surowka, PRL 103, 191601 (2009)

Chiral Vortical Effect for photons

Avkhadiev, Sadofyev, PRD 96, no. 4, 045015 (2017); N. Yamamoto, PRD 96, no. 5, 051902 (2017)

- $K^{\mu} = \epsilon^{\mu\nulphaeta} A_{
 u} \partial_{lpha} A_{eta}$ Avkhadiev, Sadofyev, (2017);
- Connection to Berry curvature in same way as fermions Yamamoto (2017)
- Generalization to higher spins Huang, Sadofyev, JHEP 1903, 084 (2019)

Is there a local gauge-invarant measure of photon helicity to study CVE?

Extra conservation law for Maxwell's equation independent of energy and momentum conservation Lipkin, J. Math. Phys. 5, 696 (1964)

$$\partial_{\mu}Z^{\mu} = 0$$

Zilch charge and current:

$$Z^{0} = \mathbf{E} \cdot (\nabla \times \mathbf{E}) + \mathbf{B} \cdot (\nabla \times \mathbf{B}), \qquad \mathbf{Z} = \mathbf{E} \times \dot{\mathbf{E}} + \mathbf{B} \times \dot{\mathbf{B}}$$

Zilch is actually a component of a tensor Kibble, J. Math. Phys. 6, 1022 (1965)

 $\partial^{
ho} Z_{\mu
u
ho} = 0$

$$\begin{split} Z_{\mu\nu\rho} &= \tilde{F}^{\lambda}{}_{\mu}\partial_{\rho}F_{\nu\lambda} - F^{\lambda}{}_{\mu}\partial_{\rho}\tilde{F}_{\nu\lambda} \\ &= \tilde{F}^{\lambda}{}_{\mu}\stackrel{\leftrightarrow}{\partial}{}_{\rho}F_{\nu\lambda} + \tilde{F}^{\lambda}{}_{\nu}\stackrel{\leftrightarrow}{\partial}{}_{\rho}F_{\mu\lambda} \end{split}$$

with $Z_{\mu 00} = Z_{\mu}$, $\overleftrightarrow{\partial} = \frac{1}{2} (\overrightarrow{\partial} - \overleftrightarrow{\partial})$

Infinite set of conserved quantities $Z_{\alpha_1}^{(s)} \dots \alpha_s$ Kibble, J. Math. Phys. 6, 1022 (1965) It is convenient to define a symmetrized Zilch

$$\bar{Z}_{\alpha_{1}}^{(s)} \dots \alpha_{s} = \tilde{F}_{\alpha_{1}} \stackrel{\leftrightarrow}{\partial}_{\alpha_{2}} \cdots \stackrel{\leftrightarrow}{\partial}_{\alpha_{s-1}} F_{\alpha_{s}\lambda}$$

 $ar{Z}^{(s)}_{lpha_1}..._{lpha_s}$ and $Z^{(s)}_{lpha_1}..._{lpha_s}$ have the same charge and both are conserved

Extra conservation law for Maxwell's equation independent of energy and momentum conservation Lipkin, J. Math. Phys. 5, 696 (1964)

$$\partial_{\mu}Z^{\mu} = 0$$

Zilch charge and current:

$$Z^0 = \mathbf{E} \cdot (\nabla \times \mathbf{E}) + \mathbf{B} \cdot (\nabla \times \mathbf{B}), \qquad \mathbf{Z} = \mathbf{E} \times \dot{\mathbf{E}} + \mathbf{B} \times \dot{\mathbf{B}}$$

Zilch is actually a component of a tensor Kibble, J. Math. Phys. 6, 1022 (1965)

$$\begin{aligned} \partial^{\rho} Z_{\mu\nu\rho} &= 0\\ Z_{\mu\nu\rho} &= \tilde{F}^{\lambda}{}_{\mu}\partial_{\rho}F_{\nu\lambda} - F^{\lambda}{}_{\mu}\partial_{\rho}\tilde{F}_{\nu\lambda}\\ &= \tilde{F}^{\lambda}{}_{\mu}\stackrel{\leftrightarrow}{\partial}_{\rho}F_{\nu\lambda} + \tilde{F}^{\lambda}{}_{\nu}\stackrel{\leftrightarrow}{\partial}_{\rho}F_{\mu\lambda} \end{aligned}$$

with $Z_{\mu00} &= Z_{\mu}, \stackrel{\leftrightarrow}{\partial} = \frac{1}{2}(\overrightarrow{\partial} - \overleftarrow{\partial})$

Infinite set of conserved quantities Z^(s)_{α1}...α_s Kibble, J. Math. Phys. 6, 1022 (1965)
 It is convenient to define a symmetrized Zilch

$$\bar{Z}_{\alpha_{1}}^{(s)} \dots \alpha_{s} = \tilde{F}_{\alpha_{1}} \overset{\leftrightarrow}{\partial}_{\alpha_{2}} \cdots \overset{\leftrightarrow}{\partial}_{\alpha_{s-1}} F_{\alpha_{s}\}\lambda}$$

 $ar{Z}^{(s)}_{lpha_1}...lpha_s$ and $Z^{(s)}_{lpha_1}...lpha_s$ have the same charge and both are conserved

Extra conservation law for Maxwell's equation independent of energy and momentum conservation Lipkin, J. Math. Phys. 5, 696 (1964)

$$\partial_{\mu}Z^{\mu} = 0$$

Zilch charge and current:

$$Z^0 = \mathbf{E} \cdot (\nabla \times \mathbf{E}) + \mathbf{B} \cdot (\nabla \times \mathbf{B}), \qquad \mathbf{Z} = \mathbf{E} \times \dot{\mathbf{E}} + \mathbf{B} \times \dot{\mathbf{B}}$$

Zilch is actually a component of a tensor Kibble, J. Math. Phys. 6, 1022 (1965)

$$\partial^{\rho} Z_{\mu\nu\rho} = 0$$
$$_{\nu\rho} = \tilde{F}^{\lambda}{}_{\mu} \partial_{\rho} F_{\nu\lambda} - F^{\lambda}{}_{\mu} \partial_{\rho} \tilde{F}_{\nu\lambda}$$
$$= \tilde{F}^{\lambda}{}_{\mu} \stackrel{\leftrightarrow}{\partial}_{\rho} F_{\nu\lambda} + \tilde{F}^{\lambda}{}_{\nu} \stackrel{\leftrightarrow}{\partial}_{\rho} F_{\mu\lambda}$$

with $Z_{\mu 00} = Z_{\mu}$, $\overleftrightarrow{\partial} = \frac{1}{2} (\overrightarrow{\partial} - \overleftarrow{\partial})$

 Z_{μ}

► Infinite set of conserved quantities $Z_{\alpha_1}^{(s)}$... α_s Kibble, J. Math. Phys. 6, 1022 (1965) ► It is convenient to define a symmetrized Zilch

$$\bar{Z}_{\alpha_{1}}^{(s)} \dots _{\alpha_{s}} = \tilde{F}_{\alpha_{1}}^{\lambda} \stackrel{\leftrightarrow}{\partial}_{\alpha_{2}} \cdots \stackrel{\leftrightarrow}{\partial}_{\alpha_{s-1}}^{\lambda} F_{\alpha_{s} \} \lambda}$$

 $\bar{Z}^{(s)}_{lpha_1}...lpha_s$ and $Z^{(s)}_{lpha_1}...lpha_s$ have the same charge and both are conserved

Extra conservation law for Maxwell's equation independent of energy and momentum conservation Lipkin, J. Math. Phys. 5, 696 (1964)

$$\partial_{\mu}Z^{\mu} = 0$$

Zilch charge and current:

$$Z^0 = \mathbf{E} \cdot (\nabla \times \mathbf{E}) + \mathbf{B} \cdot (\nabla \times \mathbf{B}), \qquad \mathbf{Z} = \mathbf{E} \times \dot{\mathbf{E}} + \mathbf{B} \times \dot{\mathbf{B}}$$

Zilch is actually a component of a tensor Kibble, J. Math. Phys. 6, 1022 (1965)

$$\partial^{\rho} Z_{\mu\nu\rho} = 0$$

$$Z_{\mu\nu\rho} = \tilde{F}^{\lambda}{}_{\mu}\partial_{\rho}F_{\nu\lambda} - F^{\lambda}{}_{\mu}\partial_{\rho}\tilde{F}_{\nu\lambda}$$
$$= \tilde{F}^{\lambda}{}_{\mu}\stackrel{\leftrightarrow}{\partial}{}_{\rho}F_{\nu\lambda} + \tilde{F}^{\lambda}{}_{\nu}\stackrel{\leftrightarrow}{\partial}{}_{\rho}F_{\mu\lambda}$$

with $Z_{\mu 00} = Z_{\mu}$, $\overleftrightarrow{\partial} = \frac{1}{2} (\overrightarrow{\partial} - \overleftarrow{\partial})$

Infinite set of conserved quantities Z^(s)_{α1} ...α_s Kibble, J. Math. Phys. 6, 1022 (1965)
 It is convenient to define a symmetrized Zilch

$$\bar{Z}^{(s)}_{\alpha_{1}}\cdots\alpha_{s}=\tilde{F}^{\lambda}{}_{\{\alpha_{1}}\stackrel{\leftrightarrow}{\partial}_{\alpha_{2}}\cdots\stackrel{\leftrightarrow}{\partial}_{\alpha_{s-1}}F_{\alpha_{s}\}\lambda}$$

 $\bar{Z}^{(s)}_{\alpha_1}\dots _{\alpha_s}$ and $Z^{(s)}_{\alpha_1}\dots _{\alpha_s}$ have the same charge and both are conserved

Physical meaning of Zilch

After quantization:

$$\int d^3x : Z_0 := \sum_J \omega_J^2 (a_J^{(+)\dagger} a_J^{(+)} - a_J^{(-)\dagger} a_J^{(-)})$$

Chernodub, Cortijo, Landsteiner, PRD 98, no. 6, 065016 (2018)

 \Rightarrow Zilch measures helicity separation weighted with frequency squared

Zilch was used to describe interaction of circularly polarized light with chiral molecules

Tang, Cohen, PRL 104, 163901 (2010)

▶ K^{μ} - **Pro**: 'right' dimension for a current. **Con**: local non gauge-invariant Z^{μ} - **Pro**: local gauge-invariant. **Con**: non-canonical dimensionality

Chiral kinetic theory - I

Symmetrized Zilch

$$\bar{Z}_{\alpha_{1}}^{(s)} \cdots \alpha_{s} = \tilde{F}_{\alpha_{1}}^{\lambda} \overset{\leftrightarrow}{\partial}_{\alpha_{2}} \cdots \overset{\leftrightarrow}{\partial}_{\alpha_{s-1}}^{\lambda} F_{\alpha_{s} \} \lambda}$$

Construction of current in CKT

(i) Vectors at our disposal: p^{μ} and $j^{\mu} = p^{\mu}f + S^{\mu\nu}\partial_{\nu}f$ (ii) Dimensionality

• Case s = 3, $[\bar{Z}] = [E]^5$, thus

$$ar{Z}_{i00} = \int rac{d^4 p}{(2\pi)^3} \, \delta(p^2) \, p_{\{0} \, p_0 \, j_{i\}}$$

• Global equilibrium, first order in vorticity ω :

Zilch Vortical Effect
$$ar{Z}_{i00} = rac{2\pi^2 T^4}{27} \omega_i$$

• Relation to the **Berry curvature** through $S^{\mu\nu}$!

Chiral kinetic theory - II

• Case
$$s > 3$$

 $\bar{Z}_{i0\cdots 0} = \int \frac{d^4p}{(2\pi)^3} \,\delta(p^2) \, p_{\{0} \cdots p_0 \, j_i\}$

• Global equilibrium, first order in vorticity ω :

$$\bar{Z}_{i0\cdots 0} = \omega_i \frac{1}{2\pi^2} \frac{(s+1)(s+2)}{3s} \int_0^{+\infty} d|\mathbf{p}| |\mathbf{p}|^s f^{(0)}$$
$$f^{(0)} = (e^{|\mathbf{p}|/T} - 1)^{-1}$$

Infinite set of Zilch Vortical Effects related to Berry curvature!

Gauge-dependent Wigner function

$$W^{\mu\nu}(x,p) = \int \frac{d^4y}{(2\pi\hbar)^4} e^{-\frac{i}{\hbar}p\cdot y} \langle : A^{\mu}\left(x+\frac{y}{2}\right)A^{\nu}\left(x-\frac{y}{2}\right) : \rangle$$

• Equations of motion (we choose $\partial_{\mu}A^{\mu} = 0$)

$$egin{aligned} &\left(p_{lpha}-irac{\hbar}{2}\partial_{lpha}
ight)W^{lpha\mu}(x,p)=0,\ &\left(p_{lpha}+irac{\hbar}{2}\partial_{lpha}
ight)W^{\mulpha}(x,p)=0,\ &\left(p^{2}-m^{2}-rac{\hbar^{2}}{4}\partial_{lpha}\partial^{lpha}
ight)W^{\mu
u}(x,p)=0,\ &\hbar\,p\cdot\partial W^{\mu
u}(x,p)=0, \end{aligned}$$

Semiclassical expansion

$$W^{\mu
u} = W^{(0)\mu
u} + \hbar W^{(1)\mu
u} + \dots$$

Gauge-dependent Wigner function - Zeroth order

• Equations of motion at zeroth order in \hbar

$$egin{array}{ll} p_lpha W^{(0)lpha \mu}(x,p) &= 0, \ p_lpha W^{(0)\mu lpha}(x,p) &= 0, \ p^2 - m^2) W^{(0)\mu
u}(x,p) &= 0, \ p \cdot \partial W^{(0)\mu
u}(x,p) &= 0 \end{array}$$

Explicit calculation of Wigner function by plugging the free field

$$A^{\mu}(x) = \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2E}} \sum_{\lambda} \left(\epsilon^{\mu}_{\lambda} a_{\mathbf{p},\lambda} e^{-ip \cdot x} + (\epsilon^{\mu}_{\lambda})^{*} a^{\dagger}_{\mathbf{p},\lambda} e^{+ip \cdot x} \right)$$

We obtain

$$W^{(0)\mu\nu}(x,p) = \left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^2}\right)f^{(0)}(x,p)\delta(p^2 - m^2)$$

which is a solution of EOMs

Gauge-dependent Wigner function - First order

Equations of motion at first order in \hbar

$$p_{\alpha}W^{(1)\alpha\mu}(x,p) - \frac{i}{2}\partial_{\alpha}W^{(0)\alpha\mu}(x,p) = 0$$
$$p_{\alpha}W^{(1)\mu\alpha}(x,p) + \frac{i}{2}\partial_{\alpha}W^{(0)\mu\alpha}(x,p) = 0$$
$$(p^{2} - m^{2})W^{(1)\mu\nu}(x,p) = 0$$
$$p \cdot \partial W^{(1)\mu\nu}(x,p) = 0$$

•
$$W^{\mu\nu} = W^{\mu\nu}_S + W^{\mu\nu}_A \ (W^{\mu\nu}_S = W^{\nu\mu}_S \text{ and } W^{\mu\nu}_A = -W^{\nu\mu}_A)$$

• Global equilibrium: $f^{(0)} = (1/(2\pi)^3)[\exp(\beta \cdot p) - 1]^{-1}$

$$W^{\mu\nu} = \left[\left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^2} \right) (f^{(0)} + \hbar f^{(1)}) + i\hbar \,\omega^{\mu\nu} f^{(0)\prime} \right] \delta(p^2 - m^2)$$

$$\omega^{\mu\nu} = \frac{1}{2} (\partial^{\mu}\beta^{\nu} - \partial^{\nu}\beta^{\mu}), \ f^{(0)\prime} = \frac{\partial f^{(0)}}{\partial (\beta \cdot p)}$$

Gauge-invariant Wigner function

$$Y_{\sigma\delta\nu\alpha} = \int \frac{d^4y}{(2\pi\hbar)^4} e^{-\frac{i}{\hbar}p\cdot y} \langle : F_{\sigma\delta}\left(x+\frac{y}{2}\right)F_{\nu\alpha}\left(x-\frac{y}{2}\right) : \rangle$$

▶ It can be computed from Gauge-dependent Wigner function

$$Y_{\sigma\delta\nu\alpha} = k_{\sigma}^* k_{\nu} W_{\delta\alpha} - k_{\sigma}^* k_{\alpha} W_{\delta\nu} - k_{\delta}^* k_{\nu} W_{\sigma\alpha} + k_{\delta}^* k_{\alpha} W_{\sigma\nu}$$

ith $k^{\mu} = p^{\mu} + i \frac{\hbar}{2} \partial^{\mu}$

Global equilibrium at first order in
$$\hbar Y_{\sigma\delta\nu\alpha} =$$

w

$$= \left[p_{\sigma} p_{\nu} g_{\delta\alpha}(f^{(0)} + \hbar f^{(1)}) + i\hbar p_{\sigma} p_{\nu} \omega_{\delta\alpha} f^{(0)'} + i\frac{\hbar}{2} g_{\delta\alpha}(p_{\sigma} \partial_{\nu} f^{(0)} - p_{\nu} \partial_{\sigma} f^{(0)}) \right] \delta(p^{2} - m^{2})$$

$$- \left[p_{\sigma} p_{\alpha} g_{\delta\nu}(f^{(0)} + \hbar f^{(1)}) + i\hbar p_{\sigma} p_{\alpha} \omega_{\delta\nu} f^{(0)'} + i\frac{\hbar}{2} g_{\delta\nu}(p_{\sigma} \partial_{\alpha} f^{(0)} - p_{\alpha} \partial_{\sigma} f^{(0)}) \right] \delta(p^{2} - m^{2})$$

$$- \left[p_{\delta} p_{\nu} g_{\sigma\alpha}(f^{(0)} + \hbar f^{(1)}) + i\hbar p_{\delta} p_{\nu} \omega_{\sigma\alpha} f^{(0)'} + i\frac{\hbar}{2} g_{\sigma\alpha}(p_{\delta} \partial_{\nu} f^{(0)} - p_{\nu} \partial_{\delta} f^{(0)}) \right] \delta(p^{2} - m^{2})$$

$$+ \left[p_{\delta} p_{\alpha} g_{\sigma\nu}(f^{(0)} + \hbar f^{(1)}) + i\hbar p_{\delta} p_{\alpha} \omega_{\sigma\nu} f^{(0)'} + i\frac{\hbar}{2} g_{\sigma\nu}(p_{\delta} \partial_{\alpha} f^{(0)} - p_{\alpha} \partial_{\delta} f^{(0)}) \right] \delta(p^{2} - m^{2})$$

$$+ \text{Terms with } 1/p^{2} \text{ cancel} \Longrightarrow m \rightarrow 0 \text{ safely}$$

CVE and ZVE from Wigner function

Chiral Vortical Effect

$$K^{\mu} = -i\epsilon^{\mu
ulphaeta}\int d^4p\,k_{lpha}W_{
ueta} = rac{T^2}{6}\omega^{\mu} \qquad O(\hbar)$$

with $k^{\mu} = p^{\mu} + i \frac{\hbar}{2} \partial^{\mu}$

Zilch Vortical Effect

Typical terms are of the form

$$\langle:\tilde{F}^{\lambda}{}_{\mu}\partial_{\rho}F_{\nu\lambda}:\rangle=\frac{1}{2}\int d^{4}p\,k_{\rho}\epsilon^{\lambda}{}_{\mu}{}^{\sigma\delta}Y_{\sigma\delta\nu\lambda}$$

$$\bar{Z}^{\mu 00} = \frac{2\pi^2 T^4}{27} \omega^{\mu} \qquad O(\hbar)$$

in agreement with CKT!

• $\bar{Z}_{\alpha_1 \dots \alpha_s}^{(s)}$ from Wigner function also agrees with CKT

Summary

- Zilch currents from chiral kinetic theory
- Zilch currents from Wigner function
- Zilch currents from equilibrium QFT (not shown in this talk)
- Results of CKT, Wigner function and equilibrium QFT agree
- Connection between Zilch Vortical Effects and Berry curvature

Outlook

- Origin of Chiral Vortical Effects
- Transport theory for vector particles
- Polarization effects in heavy-ion collisions