Formulation of relativistic spin hydrodynamics based on entropy-current analysis

Hidetoshi TAYA (Fudan University)

with K. Hattori (YITP), M. Hongo (Illinois), X.-G. Huang (Fudan), M. Matsuo (UCAS)

Hattori, Hongo, Huang, Matsuo, HT, Phys. Lett. B795, 100 (2019) [arXiv:1901.06615]

Ultra-relativistic heavy ion collisions

Aim: study quark-gluon plasma (QGP) **Lesson:** QGP behaves like a perfect liquid and hydrodynamics works so well

Huge ω and B

Question: QGP under huge ω and/or B?

Expectation: QGP is polarized

cf. talk by Becattini, Xia, ...

Magnetic field B effect

Zeeman splitting (Landau quantization)

 $E \rightarrow E - s \cdot qB$

charge dependent spin polarization

charge <u>independent spin polarization</u>

Experimental fact Observed

FIG. 5. Λ ($\bar{\Lambda}$) polarization as a function of the collision centrality in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Open boxes and vertical lines show systematic and statistical uncertainties. The data points for $\bar{\Lambda}$ are slightly shifted for visibility.

How about theory?

Hydrodynamics for spin polarized QGP?

Far from complete

Hydrodynamics for spin polarized QGP

✓ <u>"Hydro simulations" exist, but...</u>

- usual hydro (i.e., hydro w/o spin) is solved
- thermal vorticity $\tilde{\omega}^{\mu\nu} \equiv \partial^{\mu}(u^{\nu}/T) \partial^{\nu}(u^{\mu}/T)$ is converted into spin via Cooper-Frye formula (???)

 Formulation of relativistic hydrodynamics with spin is still under construction
 cf. talk by Wojciech

Current status of formulation of spin hydro

✓ <u>Non-relativistic case</u>

e.g. Eringen (1998); Lukaszewicz (1999)

Already established (e.g. micropolar fluid)

- applied to pheno. and is successful ^{e.g. spintronics:} Takahashi et al. (2015)
- spin must be dissipative because of mutual conversion b/w spin and orbital angular momentum

✓ <u>Relativistic case</u>

Current status of formulation of spin hydro

✓ <u>Non-relativistic case</u>

e.g. Eringen (1998); Lukaszewicz (1999)

Already established (e.g. micropolar fluid)

- applied to pheno. and is successful ^{e.g. spintronics:} Takahashi et al. (2015)
- spin must be dissipative because of mutual conversion b/w spin and orbital angular momentum

✓ <u>Relativistic case</u>

Some preceding works do exist, but

- only for "ideal" fluid (no dissipative corrections)
- some claim spin should be conserved

Purpose of this talk

Formulate relativistic spin hydro with 1st
 order dissipative corrections for the first time

Clarify spin must be dissipative

Purpose of this talk

Formulate relativistic spin hydro with 1st
 order dissipative corrections for the first time

Clarify spin must be dissipative

<u>Outline</u>

1. Introduction

- 2. Formulation based on entropy-current analysis
- 3. Linear mode analysis
- 4. Summary

Outline

1. Introduction

2. Formulation based on entropy-current analysis

- 3. Linear mode analysis
- 4. Summary

✓ Many formulations ^{e.}

e.g. kinetic theory; QFT; Lagrangian; fluid/gravity; projection op. ...

Many formulations

e.g. kinetic theory; QFT; Lagrangian; fluid/gravity; projection op. ...

(see talk by Hattori) cf. also successful in MHD, anomalous hydro, chiral MHD ...

Phenomenological formulation (EFT construction)

✓ Many formulations

e.g. kinetic theory; QFT; Lagrangian; fluid/gravity; projection op. ...

(see talk by Hattori) cf. also successful in MHD, anomalous hydro, chiral MHD ...

Phenomenological formulation (EFT construction)

<u>Step 1</u>: Write down the conservation law: $0 = \partial_{\mu}T^{\mu\nu}$ 4 eqs

<u>Step 2</u>:

✓ Many formulations

e.g. kinetic theory; QFT; Lagrangian; fluid/gravity; projection op. ...

(see talk by Hattori) cf. also successful in MHD, anomalous hydro, chiral MHD ...

Phenomenological formulation (EFT construction)

Step 1: Write down the conservation law: $0 = \partial_{\mu}T^{\mu\nu}$ 4 eqs

<u>Step 2</u>: Express $T^{\mu\nu}$ i.t.o hydro variables (constitutive relation)

Many formulations

e.g. kinetic theory; QFT; Lagrangian; fluid/gravity; projection op. ...

(see talk by Hattori) cf. also successful in MHD, anomalous hydro, chiral MHD ... **Phenomenological formulation** (EFT construction) <u>Step 1</u>: Write down the conservation law: $0 = \partial_{\mu}T^{\mu\nu}$ 4 eqs <u>Step 2</u>: Express $T^{\mu\nu}$ i.t.o hydro variables (constitutive relation) - define hydro variables: $\{\beta, u^{\mu}\}$ $(u^{2} = -1)$ 1 + (4-1) = 4 DoGs"chemical potential" for P^{μ}

Many formulations

e.g. kinetic theory; QFT; Lagrangian; fluid/gravity; projection op. ...

(see talk by Hattori) cf. also successful in MHD, anomalous hydro, chiral MHD ... ✓ Phenomenological formulation (EFT construction) <u>Step 1</u>: Write down the conservation law: $0 = \partial_{\mu}T^{\mu\nu}$ <u>Step 2</u>: Express $T^{\mu\nu}$ i.t.o hydro variables (constitutive relation) 1 + (4-1) = 4 DoGs - define hydro variables: { β , u^{μ} } $(u^2 = -1)$ - write down all the possible tensor structures of $T^{\mu\nu}$ $T^{\mu\nu} = f_1(\beta)g^{\mu\nu} + f_2(\beta)u^{\mu}u^{\nu}$ $\overline{+f_3(\beta)}\epsilon^{\mu\nu\rho\sigma}\partial_{\rho}u_{\sigma}+f_4(\beta)\overline{\partial^{\mu}u^{\nu}+f_5(\beta)}\overline{\partial^{\nu}u^{\mu}}$ $+f_6(\beta)g^{\mu\nu}\partial^{\rho}u_{\rho} + f_7(\beta)u^{\mu}u^{\nu}\partial^{\rho}u_{\rho} + f_8(\beta)u^{\mu}\partial_{\mu}u^{\nu} + \dots + O(\partial^2)$

Many formulations

e.g. kinetic theory; QFT; Lagrangian; fluid/gravity; projection op. ...

(see talk by Hattori) cf. also successful in MHD, anomalous hydro, chiral MHD ... **Phenomenological formulation** (EFT construction) <u>Step 1</u>: Write down the conservation law: $0 = \partial_{\mu}T^{\mu\nu}$ 4 eqs <u>Step 2</u>: Express $T^{\mu\nu}$ i.t.o hydro variables (constitutive relation) 1 + (4-1) = 4 DoGs

- define hydro variables: { β , u^{μ} } ($u^2 = -1$) "+ (4-1) = 4 Dogs" (red) "chemical potential" for P^{μ}

- write down all the possible tensor structures of $T^{\mu\nu}$

 $T^{\mu\nu} = f_1(\beta)g^{\mu\nu} + f_2(\beta)u^{\mu}u^{\nu}$

 $+f_3(\beta)\epsilon^{\mu\nu\rho\sigma}\partial_\rho u_\sigma + f_4(\beta)\partial^\mu u^\nu + f_5(\beta)\partial^\nu u^\mu$

 $+f_6(\beta)g^{\mu\nu}\partial^{\rho}u_{\rho} + f_7(\beta)u^{\mu}u^{\nu}\partial^{\rho}u_{\rho} + f_8(\beta)u^{\mu}\partial_{\mu}u^{\nu} + \dots + O(\partial^2)$

- simplify the tensor structures by (**assumptions** in hydro)
 - (1) symmetry
 - (2) power counting **→** gradient expansion
 - (3) other physical requirements **→** thermodynamics (see next slide)

Many formulations

e.g. kinetic theory; QFT; Lagrangian; fluid/gravity; projection op. ...

(see talk by Hattori) cf. also successful in MHD, anomalous hydro, chiral MHD ... **Phenomenological formulation** (EFT construction) <u>Step 1</u>: Write down the conservation law: $0 = \partial_{\mu}T^{\mu\nu}$ 4 eqs <u>Step 2</u>: Express $T^{\mu\nu}$ i.t.o hydro variables (constitutive relation) 1 + (4-1) = 4 DoGs

- define hydro variables: $\{\beta, u^{\mu}\}$ $(u^2 = -1)$ "chemical potential" for P^{μ}

- write down all the possible tensor structures of $T^{\mu\nu}$

 $T^{\mu\nu} = f_1(\beta)g^{\mu\nu} + f_2(\beta)u^{\mu}u^{\nu}$

 $+f_3(\beta)\epsilon^{\mu\nu\rho\sigma}\partial_{\rho}u_{\sigma}+f_4(\beta)\partial^{\mu}u^{\nu}+f_5(\beta)\partial^{\nu}u^{\mu}$

 $+f_6(\beta)g^{\mu\nu}\partial^{\rho}u_{\rho}+f_7(\beta)u^{\mu}u^{\nu}\partial^{\rho}u_{\rho}+f_8(\beta)u^{\mu}\partial_{\mu}u^{\nu}+\cdots+O(\partial^2)$

- simplify the tensor structures by (**assumptions** in hydro)
 - (1) symmetry
 - (2) power counting **→** gradient expansion
 - (3) other physical requirements → thermodynamics (see next slide)

Many formulations

e.g. kinetic theory; QFT; Lagrangian; fluid/gravity; projection op. ...

(see talk by Hattori) cf. also successful in MHD, anomalous hydro, chiral MHD ... **Phenomenological formulation** (EFT construction) <u>Step 1</u>: Write down the conservation law: $0 = \partial_{\mu}T^{\mu\nu}$ 4 eqs <u>Step 2</u>: Express $T^{\mu\nu}$ i.t.o hydro variables (constitutive relation) define by dra variables: $(2 - \mu^{\mu}) + (4 - 1) = 4 \text{ DoGs}$

- define hydro variables: $\{\beta, u^{\mu}\}$ $(u^2 = -1)$ "chemical potential" for P^{μ}

- write down all the possible tensor structures of $T^{\mu\nu}$

 $T^{\mu\nu} = f_1(\beta)g^{\mu\nu} + f_2(\beta)u^{\mu}u^{\nu}$

 $+f_3(\beta)\epsilon^{\mu\nu\rho\sigma}\partial_{\rho}u_{\sigma}+f_4(\beta)\partial^{\mu}u^{\nu}+f_5(\beta)\partial^{\nu}u^{\mu}$

 $+f_6(\beta)g^{\mu\nu}\partial^{\rho}u_{\rho}+f_7(\beta)u^{\mu}u^{\nu}\partial^{\rho}u_{\rho}+f_8(\beta)u^{\mu}\partial_{\mu}u^{\nu}+\cdots+O(\partial^2)$

- simplify the tensor structures by (**assumptions** in hydro)
 - (1) symmetry
 - (2) power counting **→** gradient expansion
 - (3) other physical requirements → thermodynamics (see next slide)

Many formulations

e.g. kinetic theory; QFT; Lagrangian; fluid/gravity; projection op. ...

(see talk by Hattori) cf. also successful in MHD, anomalous hydro, chiral MHD ... ✓ Phenomenological formulation (EFT construction) <u>Step 1</u>: Write down the conservation law: $0 = \partial_{\mu}T^{\mu\nu}$ <u>Step 2</u>: Express $T^{\mu\nu}$ i.t.o hydro variables (constitutive relation) l + (4-1) = 4 DoGs - define hydro variables: $\{\beta, u^{\mu}\}$ $(u^2 = -1)$ - write down all the possible tensor structures of $T^{\mu\nu}$ $T^{\mu\nu} = f_1(\beta)g^{\mu\nu} + f_2(\beta)u^{\mu}u^{\nu}$ $+f_3(\beta)\epsilon^{\mu\nu\rho\sigma}\partial_{\rho}u_{\sigma}+f_4(\beta)\partial^{\mu}u^{\nu}+f_5(\beta)\partial^{\nu}u^{\mu}$ $+f_{6}(\beta)g^{\mu\nu}\partial^{\rho}u_{\rho} + f_{7}(\beta)u^{\mu}u^{\nu}\partial^{\rho}u_{\rho} + f_{8}(\beta)u^{\mu}\partial_{\mu}u^{\nu} + \dots + O(\partial^{2})$ - simplify the tensor structures by (assumptions in hydro) (1) symmetry

- (2) power counting **→** gradient expansion
- (3) other physical requirements **→** thermodynamics (see next slide)

✓ Hydrodynamic eq. = conservation law + constitutive relation

Constraints by thermodynamics

Constraints by thermodynamics

Expand $T^{\mu\nu}$ i.t.o derivatives

 $T^{\mu\nu} = T^{\mu\nu}_{(0)} + T^{\mu\nu}_{(1)} + O(\partial^2) \text{ where } T^{\mu\nu}_{(0)} = eu^{\mu}u^{\nu} + p(g^{\mu\nu} + u^{\mu}u^{\nu})$ because $T^{\mu\nu} \xrightarrow[\text{static eq.}]{} T^{\mu\nu}_{(0)} = (e, p, p, p)$

Constraints by thermodynamics

Expand $T^{\mu\nu}$ i.t.o derivatives

$$T^{\mu\nu} = T^{\mu\nu}_{(0)} + T^{\mu\nu}_{(1)} + O(\partial^2) \text{ where } T^{\mu\nu}_{(0)} = eu^{\mu}u^{\nu} + p(g^{\mu\nu} + u^{\mu}u^{\nu})$$

because $T^{\mu\nu} \xrightarrow[\text{static eq.}]{} T^{\mu\nu}_{(0)} = (e, p, p, p)$

1st law of thermodynamics says

 $ds = \beta de, \ s = \beta(e+p)$

With EoM $0 = \partial_{\mu}T^{\mu\nu}$, div. of entropy current $S^{\mu} = su^{\mu} + O(\partial)$ can be evaluated as

 $\partial_{\mu}S^{\mu} = -T^{\mu\nu}_{(1)}\partial_{\mu}(\beta u_{\nu}) + O(\partial^{3})$

Constraints by thermodynamics

Expand $T^{\mu\nu}$ i.t.o derivatives

$$T^{\mu\nu} = T^{\mu\nu}_{(0)} + T^{\mu\nu}_{(1)} + O(\partial^2) \text{ where } T^{\mu\nu}_{(0)} = eu^{\mu}u^{\nu} + p(g^{\mu\nu} + u^{\mu}u^{\nu})$$

because $T^{\mu\nu} \xrightarrow[\text{static eq.}]{} T^{\mu\nu}_{(0)} = (e, p, p, p)$

1st law of thermodynamics says

 $ds = \beta de, \ s = \beta(e+p)$

With EoM $0 = \partial_{\mu}T^{\mu\nu}$, div. of entropy current $S^{\mu} = su^{\mu} + O(\partial)$ can be evaluated as

$$\partial_{\mu}S^{\mu} = -T^{\mu\nu}_{(1)}\partial_{\mu}(\beta u_{\nu}) + O(\partial^{3})$$

2st law of thermodynamics says $\partial_{\mu}S^{\mu} \ge 0$, which is guaranteed if RHS is expressed as a semi-positive bilinear as

$$-T_{(1)}^{\mu\nu}\partial_{\mu}(\beta u_{\nu}) = \sum_{X_{i} \in T_{(1)}} \lambda_{i} X_{i}^{\mu\nu} X_{i\nu\mu} \geq 0 \text{ with } \lambda_{i} \geq 0 \quad \text{(strong constraint !!)}$$

Constraints by thermodynamics

Expand $T^{\mu\nu}$ i.t.o derivatives

$$T^{\mu\nu} = T^{\mu\nu}_{(0)} + T^{\mu\nu}_{(1)} + O(\partial^2) \text{ where } T^{\mu\nu}_{(0)} = eu^{\mu}u^{\nu} + p(g^{\mu\nu} + u^{\mu}u^{\nu})$$

because $T^{\mu\nu} \xrightarrow[\text{static eq.}]{} T^{\mu\nu}_{(0)} = (e, p, p, p)$

1st law of thermodynamics says

 $ds = \beta de, \ s = \beta(e+p)$

With EoM $0 = \partial_{\mu}T^{\mu\nu}$, div. of entropy current $S^{\mu} = su^{\mu} + O(\partial)$ can be evaluated as

$$\partial_{\mu}S^{\mu} = -T^{\mu\nu}_{(1)}\partial_{\mu}(\beta u_{\nu}) + O(\partial^{3})$$

2st law of thermodynamics says $\partial_{\mu}S^{\mu} \ge 0$, which is guaranteed if RHS is expressed as a semi-positive bilinear as

$$-T_{(1)}^{\mu\nu}\partial_{\mu}(\beta u_{\nu}) = \sum_{X_{i} \in T_{(1)}} \lambda_{i} X_{i}^{\mu\nu} X_{i\nu\mu} \geq 0 \text{ with } \lambda_{i} \geq 0 \quad \text{(strong constraint !!)}$$

ex) heat current: $2h^{(\mu}u^{\nu)} \equiv h^{\mu}u^{\nu} + h^{\nu}u^{\mu} \in T^{\mu\nu}_{(1)} \ (u_{\mu}h^{\mu} = 0)$ $\Rightarrow T^{\mu\nu}_{(1)}\partial_{\mu}(\beta u_{\nu}) = -\beta h^{\mu}(\beta \partial_{\perp\mu}\beta^{-1} + u^{\nu}\partial_{\nu}u^{\mu}) \ge 0$ $\Rightarrow h^{\mu} = -\kappa(\beta \partial_{\perp\mu}\beta^{-1} + u^{\nu}\partial_{\nu}u^{\mu}) \text{ with } \kappa \ge 0$

✓ Constitutive relation up to 1st order w/o spin

 $T^{\mu\nu}_{(0)} = eu^{\mu}u^{\nu} + p(g^{\mu\nu} + u^{\mu}u^{\nu})$

 $T_{(1)}^{\mu\nu} = -2\kappa \left(Du^{(\mu} + \beta \partial_{\perp}^{(\mu} \beta^{-1}) u^{\nu} - 2\eta \partial_{\perp}^{<\mu} u^{\nu>} - \zeta \left(\partial_{\mu} u^{\mu} \right) \Delta^{\mu\nu} \right)$

heat current shear viscosity bulk viscosity

✓ Constitutive relation up to 1st order w/o spin

 $T^{\mu\nu}_{(0)} = eu^{\mu}u^{\nu} + p(g^{\mu\nu} + u^{\mu}u^{\nu})$

 $T_{(1)}^{\mu\nu} = -2\kappa \left(Du^{(\mu} + \beta \partial_{\perp}^{(\mu} \beta^{-1}) u^{\nu} - 2\eta \partial_{\perp}^{<\mu} u^{\nu>} - \zeta \left(\partial_{\mu} u^{\mu} \right) \Delta^{\mu\nu} \right)$

heat current shear viscosity bulk viscosity

✓ Hydrodynamic equation w/o spin
Hydrodynamic eq. = conservation law + constitutive relation
Euler eq. $0 = \partial_{\mu}T^{\mu\nu}$ $T^{\mu\nu} = T^{\mu\nu}_{(0)}$ Navier-Stokes eq. $0 = \partial_{\mu}T^{\mu\nu}$ $T^{\mu\nu} = T^{\mu\nu}_{(0)} + T^{\mu\nu}_{(1)}$ \vdots \vdots \vdots

✓ Strategy is the same

✓ Phenomenological formulation

<u>Step 1</u>: Write down the conservation law

Step 2: Construct a constitutive relation

- define hydro variables
- write down all the possible tensor structures
- simplify the tensor structures by e.g. thermodynamics

<u>Step 1</u>: Write down the conservation law

(1) energy conservation

$$0=\partial_{\mu}T^{\mu
u}$$
 (canonical)

<u>Step 1</u>: Write down the conservation laws

 $_{\Box}$ (1) energy conservation $_{\Box}$ $_{\Box}$ (2) total angular momentum conservation

$$0=\partial_{\mu}M^{\mu,lpha\mu}$$

 $0 = \partial_{\mu} T^{\mu\nu}$

(canonical)

<u>Step 1</u>: Write down the conservation laws

$_{ m \mid}$ (1) energy conservation $_{ m \mid}$	$ $ (2) total angular momentum conservation $ $ -	
$0=\partial_{\mu}T^{\mu u}$ (canonical)	$0=\partial_{\mu}M^{\mu,lphaeta}$	$\psi(x) \to S(\Lambda)\psi(\Lambda^{-1}x)$
	$= \partial_{\mu} \left(L^{\mu,\alpha\beta} + \Sigma \right)$	$\Sigma^{\mu,\alpha\beta}$)
	$=\partial_{\mu} (x^{lpha}T^{\mueta} -$	$-x^{\beta}T^{\mu\alpha} + \Sigma^{\mu,\alpha\beta})$
	$\partial \Sigma^{\mu,\alpha\beta} = T$	$\alpha\beta = T\beta\alpha$
	$\bullet \bullet \circ_{\mu} 2 - 1$	

<u>Step 1</u>: Write down the conservation laws

$$ (1) energy conservation $_{\parallel}$	tion $_{igcap_{l}}$ (2) total angular momentum conservation $-$	
$0 = \partial_{\mu}T^{\mu u}$ (canonical)	$0=\partial_{\mu}M^{\mu,lphaeta}$	$\psi(x) \to S(\Lambda)\psi(\Lambda^{-1}x)$
	$= \partial_{\mu} (L^{\mu,\alpha\beta} + \Sigma^{\mu,\alpha\beta})$ = $\partial_{\mu} (x^{\alpha}T^{\mu\beta} - x^{\beta}T^{\mu\alpha} + \Sigma^{\mu,\alpha\beta})$ of talk by Eukushima	
	$\therefore \ \partial_{\mu} \Sigma^{\mu,\alpha\beta} = T$	$\alpha\beta - T^{\beta\alpha}$

- ✓ Spin is **not** conserved if (canonical) $T^{\mu\nu}$ has anti-symmetric part $T^{\mu\nu}_{(a)}$
- ✓ There's **no** a priori reason (canonical) $T^{\mu\nu}$ must be symmetric

<u>Step 1</u>: Write down the conservation laws

– (1) energy conservation \rceil	$_{igsymbol{ imes}}$ (2) total angular momentum conservation $-$	
$0=\partial_{\mu}T^{\mu u}$ (canonical)	$0 = \partial_{\mu} M^{\mu,\alpha\beta} \qquad \qquad \psi(x) \to S(\Lambda)\psi(\Lambda^{-1}x)$	
	$= \partial_{\mu} \left(L^{\mu,\alpha\beta} + \Sigma^{\mu,\alpha\beta} \right)$	
	$= \partial_{\mu} \left(x^{\alpha} T^{\mu\beta} - x^{\beta} T^{\mu\alpha} + \Sigma^{\mu,\alpha\beta} \right)$ cf. talk by Fukushima	
	$\bullet \bullet \partial_{\mu} \Sigma^{\mu,\alpha\beta} = T^{\alpha\beta} - T^{\beta\alpha}$	

- ✓ Spin is **not** conserved if (canonical) $T^{\mu\nu}$ has anti-symmetric part $T^{\mu\nu}_{(a)}$
- ✓ There's **no** a priori reason (canonical) $T^{\mu\nu}$ must be symmetric

<u>Step 2</u>: Construct a constitutive relation for $T^{\mu\nu}$, $\Sigma^{\mu,\alpha\beta}$

(1) define hydro variables

4 DoGs

 $\{\beta, u^{\mu}\}$

(2) simplify the tensor structure by thermodynamics

<u>Step 2</u>: Construct a constitutive relation for $T^{\mu\nu}$, $\Sigma^{\mu,\alpha\beta}$

(1) define hydro variables

4 + 6 = 10 DoGs = # of EoMs

Introduce spin chemical potential $\{\beta, u^{\mu}, \omega^{\mu\nu}\}$ with $\omega^{\mu\nu} = -\omega^{\nu\mu}$

✓ { β , u^{μ} , $\omega^{\mu\nu}$ } are independent w/ each other at this stage ($\omega^{\mu\nu} \neq$ thermal vorticity)

(2) simplify the tensor structure by thermodynamics

<u>Step 2</u>: Construct a constitutive relation for $T^{\mu\nu}$, $\Sigma^{\mu,\alpha\beta}$

(1) define hydro variables

4 + 6 = 10 DoGs = # of EoMs

Introduce spin chemical potential $\{\beta, u^{\mu}, \omega^{\mu\nu}\}$ with $\omega^{\mu\nu} = -\omega^{\nu\mu}$

✓ { β , u^{μ} , $\omega^{\mu\nu}$ } are independent w/ each other at this stage ($\omega^{\mu\nu} \neq$ thermal vorticity)

(2) simplify the tensor structure by thermodynamics

Expand $T^{\mu\nu}$, $\Sigma^{\mu,\alpha\beta}$, i.t.o derivatives

 $T^{\mu\nu} = eu^{\mu}u^{\nu} + p(g^{\mu\nu} + u^{\mu}u^{\nu}) + T^{\mu\nu}_{(1)} + O(\partial^2), \quad \Sigma^{\mu,\alpha\beta} = u^{\mu}\sigma^{\alpha\beta} + O(\partial^1)$

where I defined **spin density** $\sigma^{\alpha\beta}$

<u>Step 2</u>: Construct a constitutive relation for $T^{\mu\nu}$, $\Sigma^{\mu,\alpha\beta}$

(1) define hydro variables

4 + 6 = 10 DoGs = # of EoMs

Introduce **spin chemical potential** $\{\beta, u^{\mu}, \omega^{\mu\nu}\}$ with $\omega^{\mu\nu} = -\omega^{\nu\mu}$

✓ { β , u^{μ} , $ω^{\mu\nu}$ } are independent w/ each other at this stage ($ω^{\mu\nu} ≠$ thermal vorticity)

(2) simplify the tensor structure by thermodynamics

Expand $T^{\mu\nu}$, $\Sigma^{\mu,\alpha\beta}$, i.t.o derivatives

 $T^{\mu\nu} = eu^{\mu}u^{\nu} + p(g^{\mu\nu} + u^{\mu}u^{\nu}) + T^{\mu\nu}_{(1)} + O(\partial^2), \quad \Sigma^{\mu,\alpha\beta} = u^{\mu}\sigma^{\alpha\beta} + O(\partial^1)$

where I defined **spin density** $\sigma^{\alpha\beta}$

Generalize 1st law of thermodynamics with spin as

$$ds = \beta(de - \omega_{\mu\nu}d\sigma^{\mu\nu}), \ s = \beta(e + p - \omega_{\mu\nu}\sigma^{\mu\nu})$$

<u>Step 2</u>: Construct a constitutive relation for $T^{\mu\nu}$, $\Sigma^{\mu,\alpha\beta}$

(1) define hydro variables

4 + 6 = 10 DoGs = # of EoMs

Introduce **spin chemical potential** $\{\beta, u^{\mu}, \omega^{\mu\nu}\}$ with $\omega^{\mu\nu} = -\omega^{\nu\mu}$

✓ { β , u^{μ} , $\omega^{\mu\nu}$ } are independent w/ each other at this stage ($\omega^{\mu\nu} \neq$ thermal vorticity)

(2) simplify the tensor structure by thermodynamics

Expand $T^{\mu\nu}$, $\Sigma^{\mu,\alpha\beta}$, i.t.o derivatives

 $T^{\mu\nu} = eu^{\mu}u^{\nu} + p(g^{\mu\nu} + u^{\mu}u^{\nu}) + T^{\mu\nu}_{(1)} + O(\partial^2), \quad \Sigma^{\mu,\alpha\beta} = u^{\mu}\sigma^{\alpha\beta} + O(\partial^1)$ where I defined **spin density** $\sigma^{\alpha\beta}$

Generalize 1st law of thermodynamics with spin as

$$ds = \beta (de - \omega_{\mu\nu} d\sigma^{\mu\nu}), \ s = \beta (e + p - \omega_{\mu\nu} \sigma^{\mu\nu})$$

With EoMs, div. of entropy current $S^{\mu} = su^{\mu} + O(\partial)$ can be evaluated as

$$\partial_{\mu}S^{\mu} = -T^{\mu\nu}_{(1s)}\frac{\partial_{\mu}(\beta u_{\nu}) + \partial_{\nu}(\beta u_{\mu})}{2} - T^{\mu\nu}_{(1a)}\left\{\frac{\partial_{\mu}(\beta u_{\nu}) - \partial_{\nu}(\beta u_{\mu})}{2} - 2\beta\omega_{\mu\nu}\right\} + O(\partial^{3})$$

<u>Step 2</u>: Construct a constitutive relation for $T^{\mu\nu}$, $\Sigma^{\mu,\alpha\beta}$

(1) define hydro variables

4 + 6 = 10 DoGs = # of EoMs

Introduce **spin chemical potential** $\{\beta, u^{\mu}, \omega^{\mu\nu}\}$ with $\omega^{\mu\nu} = -\omega^{\nu\mu}$

✓ { β , u^{μ} , $ω^{\mu\nu}$ } are independent w/ each other at this stage ($ω^{\mu\nu} ≠$ thermal vorticity)

(2) simplify the tensor structure by thermodynamics

Expand $T^{\mu\nu}$, $\Sigma^{\mu,\alpha\beta}$, i.t.o derivatives

 $T^{\mu\nu} = eu^{\mu}u^{\nu} + p(g^{\mu\nu} + u^{\mu}u^{\nu}) + T^{\mu\nu}_{(1)} + O(\partial^2), \quad \Sigma^{\mu,\alpha\beta} = u^{\mu}\sigma^{\alpha\beta} + O(\partial^1)$ where I defined **spin density** $\sigma^{\alpha\beta}$

Generalize 1st law of thermodynamics with spin as

$$ds = \beta(de - \omega_{\mu\nu}d\sigma^{\mu\nu}), \ s = \beta(e + p - \omega_{\mu\nu}\sigma^{\mu\nu})$$

With EoMs, div. of entropy current $S^{\mu} = su^{\mu} + O(\partial)$ can be evaluated as

$$\partial_{\mu}S^{\mu} = -T^{\mu\nu}_{(1s)}\frac{\partial_{\mu}(\beta u_{\nu}) + \partial_{\nu}(\beta u_{\mu})}{2} - T^{\mu\nu}_{(1a)}\left\{\frac{\partial_{\mu}(\beta u_{\nu}) - \partial_{\nu}(\beta u_{\mu})}{2} - 2\beta\omega_{\mu\nu}\right\} + O(\partial^{3})$$

✓ 2nd law of thermodynamics $\partial_{\mu}S^{\mu} \ge 0$ gives strong constraint on $T^{\mu\nu}_{(1)}$

✓ In global equilibrium $\partial_{\mu}S^{\mu} = 0$, so that ω = thermal vorticity.

Constitutive relation for $T^{\mu\nu}$ up to 1st order with spin

$$T_{(0)}^{\mu\nu} = eu^{\mu}u^{\nu} + p(g^{\mu\nu} + u^{\mu}u^{\nu})$$

heat current shear viscosity bulk viscosity

$$T_{(1)}^{\mu\nu} = -2\kappa \left(Du^{(\mu} + \beta \partial_{\perp}^{(\mu}\beta^{-1}) u^{\nu} - 2\eta \partial_{\perp}^{<\mu}u^{\nu>} - \zeta (\partial_{\mu}u^{\mu})\Delta^{\mu\nu} \right)$$

$$-2\lambda \left(-Du^{[\mu} + \beta \partial_{\perp}^{[\mu}\beta^{-1} + 4u_{\rho}\omega^{\rho[\mu}) u^{\nu]} - 2\gamma \left(\partial_{\perp}^{[\mu}u^{\nu]} - 2\Delta_{\rho}^{\mu}\Delta_{\lambda}^{\nu}\omega^{\rho\lambda} \right)$$

"boost heat current" "rotational (spinning) viscosity
NEW !

- Relativistic generalization of a non-relativistic micropolar fluid
- ✓ "boost heat current" is a relativistic effect

✓ Hydrodynamics equation up to 1st order with spin

 $0 = \partial_{\mu} (T_{(0)}^{\mu\nu} + T_{(1)}^{\mu\nu} + O(\partial^{2})) \qquad \qquad \partial_{\mu} (u^{\mu} \sigma^{\alpha\beta}) = T_{(1)}^{\alpha\beta} - T_{(1)}^{\beta\alpha} + O(\partial^{2})$

Outline

- 1. Introduction
- 2. Formulation based on entropy-current analysis
- 3. Linear mode analysis
- 4. Summary

Linear mode analysis (1/2)

Setup: small perturbations on top of global therm. equilibrium

Linear mode analysis (2/2) Hydro w/o spin $\{\beta, u^{\mu}\}$ ✓ Hydro with spin { β , u^{μ} , $\omega^{\mu\nu}$ } -4 gapless modes 2 sound modes $\omega = \pm c_s k + O(k^2)$ 4 gapless modes 2 shear modes $\omega = -i\frac{\eta k^2}{e+n} + O(k^4)$ 2 sound modes $\omega = \pm c_s k + O(k^2)$ 2 shear modes $\omega = -i \frac{\eta k^2}{e+p} + O(k^4)$ + 6 dissipative gapped modes 3 "boost" modes $\omega = -2i\tau_{\rm b}^{-1} + O(k^2)$ where $c_s^2 \equiv \partial p / \partial e$ 3 "spin" modes $\omega = -2i\tau_s^{-1} + O(k^2)$ where $\tau_{\rm s} \equiv \frac{\partial \sigma^{ij} / \partial \omega^{ij}}{4\nu}$, $\tau_{\rm b} \equiv \frac{\partial \sigma^{i0} / \partial \omega^{i0}}{4\lambda}$

Linear mode analysis (2/2) ✓ Hydro w/o spin $\{\beta, u^{\mu}\}$ ✓ Hydro with spin { β , u^{μ} , $\omega^{\mu\nu}$ } -4 gapless modes 2 sound modes $\omega = \pm c_s k + O(k^2)$ **4** gapless modes 2 shear modes $\omega = -i\frac{\eta k^2}{e+p} + O(k^4)$ 2 sound modes $\omega = \pm c_s k + O(k^2)$ 2 shear modes $\omega = -i \frac{\eta k^2}{e+p} + O(k^4)$ + 6 dissipative gapped modes 3 "boost" modes $\omega = -2i\tau_{\rm b}^{-1} + O(k^2)$ where $c_s^2 \equiv \partial p / \partial e$ 3 "spin" modes $\omega = -2i\tau_s^{-1} + O(k^2)$ where $\tau_{\rm s} \equiv \frac{\partial \sigma^{ij} / \partial \omega^{ij}}{4\nu}$, $\tau_{\rm b} \equiv \frac{\partial \sigma^{i0} / \partial \omega^{i0}}{4\lambda}$

- ✓ We explicitly confirmed that spin is dissipative
- Time-scale of the dissipation is controlled by the new viscous constants γ , λ

Outline

- 1. Introduction
- 2. Formulation based on entropy-current analysis
- 3. Linear mode analysis
- 4. Summary

Summary

- ✓ Spin polarization in QGP is one of the hottest topics in HIC. But, its theory, in particular hydrodynamic framework, is still under construction
- Relativistic spin hydrodynamics with 1st order dissipative corrections is formulated for the first time based on the phenomenological entropy-current analysis
- ✓ Spin must be dissipative because of the mutual conversion between the orbital angular momentum and spin
- ✓ Linear mode analysis of the spin hydrodynamic equation also suggests that spin must be dissipative, whose time-scale is controlled by the new viscous constants γ , λ

Outlook: extension to 2nd order, Kubo formula, MHD, application to cond-mat, numerical simulations

BACKUP

Linearlized hydro eq.

 $M\delta \vec{c} = 0$

where

$$A_{3\times3} = \begin{pmatrix} -i\omega + 2c_s^2 \lambda' k_z^2 & ik_z & -2iD_b k_z \\ ic_s^2 k_z & -i\omega + \gamma_{\parallel} k_z^2 & 0 \\ 2ic_s^2 \lambda' k_z & 0 & -i\omega + 2D_b \end{pmatrix}$$

 $\delta \vec{c} \equiv (\delta \tilde{e}, \delta \tilde{\pi}^z, \delta \tilde{S}^{0z}, \delta \tilde{\pi}^x, \delta \tilde{S}^{zx}, \delta \tilde{\pi}^y, \delta \tilde{S}^{yz}, \delta \tilde{S}^{0x}, \delta \tilde{S}^{0y}, \delta \tilde{S}^{xy})^t$

Dispersion relations

$$\begin{split} \omega &= -2iD_s, \\ \omega &= -2iD_b, \\ \omega &= \begin{cases} -2iD_s - i\gamma'k_z^2 + \mathcal{O}(k_z^4), \\ -i\gamma_\perp k_z^2 + O(k_z^4), , \end{cases} \\ \omega &= \begin{cases} \pm c_s k_z - i\frac{\gamma_\parallel}{2}k_z^2 + \mathcal{O}(k_z^3), \\ -2iD_b - 2ic_s^2\lambda'k_z^2 + \mathcal{O}(k_z^4). \end{cases} \end{split}$$

Further simplification by EoM

The 1st order constitutive relation reads

$$\begin{split} \Theta^{\mu\nu}_{(1s)} &= 2h^{(\mu}u^{\nu)} + \tau^{\mu\nu} & h^{\mu} = -\kappa (Du^{\mu} + \beta \partial_{\perp}^{\mu}T), \\ \Theta^{\mu\nu}_{(1a)} &= 2q^{[\mu}u^{\nu]} + \phi^{\mu\nu} & q^{\mu} = -2\eta \partial_{\perp}^{\langle\mu}u^{\nu\rangle} - \zeta \theta \Delta^{\mu\nu}, \\ \Theta^{\mu\nu}_{(1a)} &= 2q^{[\mu}u^{\nu]} + \phi^{\mu\nu} & q^{\mu} = -\lambda \big(-Du^{\mu} + \beta \partial_{\perp}^{\mu}T - 4\omega^{\mu\nu}u_{\nu} \big), \\ \phi^{\mu\nu} &= -2\gamma \big(\partial_{\perp}^{[\mu}u^{\nu]} - 2\Delta^{\mu}_{\rho}\Delta^{\nu}_{\lambda}\omega^{\rho\lambda} \big), \end{split}$$

By using LO hydro eq.,

 $(e+p)Du^{\mu} = -\partial^{\mu}_{\perp}p + \mathcal{O}(\partial^2)$

we can further simplify *h,q* as

$$\begin{split} h^{\mu} &= -\kappa \left[\frac{-\partial_{\perp}^{\mu} p}{e+p} + \beta \partial_{\perp}^{\mu} T + \mathcal{O}(\partial^2) \right] = \mathcal{O}(\partial^2), \\ q^{\mu} &= -\lambda \left[\frac{2\partial_{\perp}^{\mu} p}{e+p} - 4\omega^{\mu\nu} u_{\nu} \right] + \mathcal{O}(\partial^2). \end{split}$$