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What you will see: 

✔ Motivation: why fluid-dynamical descriptions  
                     work in extreme conditions?

✔ Can we have hydrodynamic behavior far from 
equilibrium? 

✔ Derivation of fluid dynamics from the 
Boltzmann equation: gradient expansion and 
method of moments
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Initial state
 relativistic fluid

Dilute hadron gas
fm/c

Empirical: Fluid-dynamical modeling of heavy ion 
collisions works well at RHIC and LHC energies

Main assumption: fluid dynamics can be applied
at the very early stages – Why?

MADAI collaboration

0 ~1 ~10 ~20



  

Validity of fluid dynamics 
traditionally associated with: 

“proximity” to (local) equilibrium

Do these things occur early in HIC? No.

“small” gradients

macroscopic: microscopic:Separation of scales → 

Knudsen number:



  

Extreme Conditions

Or domain of applicability of hydrodynamics better 
than expected?

Knudsen number

is not small at
early times

Can this system be close to local equilibrium? 



  

Knudsen number in 
airplane aerodynamics

Example:

Kn << 0.1

Much smaller 
than what we 

get in HIC



  

Validity of  fluid dynamics

Proximity to local equilibrium,
small gradients

???



  

Boltzmann eq.

Israel-Stewart-like
theories...

...

We can study this problem
 in Kinetic theory

????
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Basics of fluid dynamics

Effective theory describing the dynamics 
of a system over long-times and long-distances

macroscopic: microscopic:Separation of scales → 

Knudsen number:

Conservation laws 
+

 simple constitutive relations
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Conservation Laws

0T 
  0N

 

Bulk viscous
pressure

Shear stress
tensor

Particle 
diffusion
current

Basics of fluid dynamics

Tensor decomposition
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Definition of “equilibrium state”

Definition of energy density

Definition of net-charge density

introduce an eq. entropy density

Definition of velocity

or or ...
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Conservation Laws

0T 
  0N

 

Basics of fluid dynamics

Tensor decomposition

Challenge: closing the equations

?
? ?
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our intuition on the validity of hydrodynamics comes 
mostly from this method

Closure: Gradient 
Expansion



  

Gradient 
Expansion

Perturbative expansion

Result is a gradient expansion – more general 
than kinetic theory

Knudsen number

Chapman EnskogHilbert

local equilibrium



  

1st order truncation: Navier-Stokes theory

2nd order truncation: Burnett theory

Chapman Enskog

Gradient 
Expansion

Hilbert



  

Chapman Enskog

Second-order truncation: Burnett theory

Hydrodynamical constitutive equations are usually 
derived by truncating this series.

Convergence is assumed!

Effective theory: can be systematically corrected

Gradient 
Expansion

Hilbert



  

H. Grad: CE is an asymptotic series, Physics of Fluids 6, 
147 (1963).

First example of divergence: Couette flow problem (RTA), 
Santos et al, PRL 56, 1571 (1986).

Heller et al: Holography+Bjorken scaling, PRL 110, 
211602 (2013) -- first time for an expanding system

Chapman Enskog

Gradient 
Expansion

Diverges (?)
Hilbert

Not necessarily a problem; but applicability and 
improvability not clear. 
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Example: Bjorken flow



  

Relativistic: 

● Unstable equations of motion!
 

● Cannot be used for any practical application 
– order does not matter 

Chapman Enskog

Gradient 
Expansion

Diverges (?)
Hilbert
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Israel-Stewart theory is not obtained 
from this method

Causality: constitutive relations for the 
shear stress tensor cannot be imposed

Dynamical equation, e.g. Israel-Stewart 
theory

Contains all orders in gradients!

Matches gradient expansion up to second order



  

Method of moments and 
14-moment approximation: 

basic ideas



  

f(x,p)

- truncation leads to hydro – no small parameter

Expansion of f(x,p) using
a complete basis

H. Grad

Method of moments
H. Grad, Comm. Pure Appl. Math. 2, 331 (1949)

 - expansion in degrees of freedom

does not have to be eq.



  

1 – Truncated Taylor series in momentum

● degrees of freedom reduced by the explicit 
truncation of expansion!
● 14 fields left

Israel-Stewart theory:14-moment approximation

equilibrium non-equilibrium

W. Israel & J M.Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).



  

Israel-Stewart theory:14-moment approximation

equilibrium non-equilibrium

definition of eq. state

4 eqs. 10 eqs.

W. Israel & J M.Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).

2 – Expansion coefficients mapped to conserved 
currents via matching conditions



  

Israel-Stewart theory:14-moment approximation

equilibrium non-equilibrium

3 – Equations of motion taken from the second 
moment of the Boltzmann equation

shear

diffusion

bulk

W. Israel & J M.Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).
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Final Equations of motion

Many terms originally omitted by Israel and Stewart.

GSD et al, PRD 85, 114047 (2012)

W. Israel & J M.Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).



  

● Nontrivial assumption: application of matching 
conditions

● All previous steps can be applied assuming 
the form:

isotropic,
non-equilibrium

scalars

correction, 
anisotropic

● This step does not require proximity to eq.



  

Matching conditions

5 parameters – can be associated 
with velocity, energy density 

and particle density

14-moment approx.: shear term only



  

Equations of motion: ultrarelativistic gas 
of hard spheres

Transport coefficients:
functional dependence 

on f0k

We recover the usual equation for the shear stress:

Thermodynamic integrals:



  

“Equilibrium” Transport coefficients:

Coefficients derived by Israel-Stewart

Equations of motion: ultrarelativistic gas 
of hard spheres

We recover the usual equation for the shear stress:



  

Example of non-equilibrium state: 
“over-occupied” state

|k|L

l

l ~ exp(a)

matching

L = 4T



  

Over-occupied Transport coefficients:

● qualitatively the same

Equations of motion: ultrarelativistic gas 
of hard spheres

We recover the usual equation for the shear stress:

● appears to be slightly 
more viscous



  

Equations of motion: ultrarelativistic gas 
of hard spheres

Coefficients do not change much with f0k. Can we see this?

We recover the usual equation for the shear stress:



  

Simulation: Boltzmann eq. + Bjorken flow 
ultrarelativistic classical gas of hard spheres
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Delta function
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Initial conditions,

shear viscosity

fixed energy

Evolution of shear 
stress does not see 
this non-equilibrium 

effect

not in equilibrium!



  

Is it ok to treat anisotropic part as a correction?

isotropic Anisotropic corrections

This appears to be a good approximation so far ... 
(checked in Gubser or Bjorken flow)

Otherwise, one gets anisotropic hydrodynasmics



  

Conclusions

● The derivation of hydrodynamics using the method 
of moments is more general than previously 
considered: hydrodynamic equations can be 
obtained even expanding around far from 
equilibrium.

● The applicability of fluid-dynamical models of 
heavy ion collisions cannot be easily justified
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