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Critical point: intriguing hints

Where on the QCD phase boundary is the CP?
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“intriguing hint” (2015 LRPNS)

Motivation for phase II of BES at RHIC and BEST topical collaboration.
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Theory/experiment gap: predictions assume equilibrium, but

Non-equilibrium physics is essential near the critical point.

Challenge: develop hydrodynamics with fluctuations capable of
describing non-equilibrium effects on critical-point signatures.

Also note:
Fluctuations are the first step to extend hydro to smaller systems.
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Stochastic hydrodynamics

Hydrodynamic eqs. are conservation equations:

∂tψ = −∇ · Flux[ψ];

Stochastic variables ψ̆ = ( T̆ i0, J̆0 ) are local operators
coarse-grained (over scale b� `mic ∼ cs/T or `mfp): more

∂tψ̆ = −∇ ·
(

Flux[ψ̆] + Noise
)

(Landau-Lifshitz)

Linearized version has been considered and applied to heavy-
ion collisions (Kapusta-Muller-MS, Kapusta-Torres-Rincon, . . . )

Non-linearities + point-like noise⇒ UV divergences.
In numerical simulations – cutoff dependence.
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Deterministic approach

Variables are one- and two-point functions:
ψ = 〈ψ̆〉 and G = 〈ψ̆ψ̆〉 − 〈ψ̆〉〈ψ̆〉 – equal-time correlator

∂tψ = −∇ · Flux[ψ,G]; (conservation)

∂tG = L[G;ψ]. (relaxation)

In Bjorken flow by Akamatsu et al , Martinez-Schaefer.
For arbitrary relativistic flow – by An et al (this talk).
Earlier, in nonrelativistic context, – by Andreev in 1970s.

Advantage: deterministic equations.

“Infinite noise” causes UV renormalization of EOS and transport
coefficients – can be taken care of analytically (1902.09517)
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Fluctuation dynamics near CP: Hydro+

Yin, MS, 1712.10305

Fluctuation dynamics near CP requires two main ingredients:

Critical fluctuations (ξ →∞)

Slow relaxation mode with τrelax ∼ ξ3 (leading to ζ →∞)

Both described by the same object: the two-point function
of the slowest hydrodynamic mode m̆ = δ(s/n),
i.e., 〈 m̆(x1) m̆(x2) 〉.

Without this mode, hydrodynamics would break down near CP
when τexpansion ∼ τrelax ∼ ξ3.
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Additional variables in Hydro+

At the CP the slowest new variable is the 2-pt function 〈m̆m̆〉 of
the slowest hydro variable m̆ = δ(s/n):

φQ(x) =

∫
∆x
〈 m̆ (x+) m̆ (x−) 〉 eiQ·∆x

where x = (x+ + x−)/2 and ∆x = x+ − x−.

Wigner transformed b/c dependence on x (∼ L) is much slower
than on ∆x. Scale separation similar to kinetic theory.
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Relaxation of fluctuations towards equilibrium

As usual, equilibration maximizes entropy S =
∑

i pi log(1/pi):

s(+)(ε, n, φQ) = s(ε, n) +
1

2

∫
Q

(
log

φQ

φ̄Q
−
φQ

φ̄Q
+ 1

)

Entropy = log # of states, which depends on
the width of P (mQ), i.e., φQ:

Wider distribution – more microstates
– more entropy: log(φ/φ̄)1/2 ;

vs
Penalty for larger deviations from
peak entropy (at δm = 0): −(1/2)φ/φ̄. - - - equilibrium (variance φ̄)

—- actual (variance φ)Maximum of s(+) is achieved at φ = φ̄.
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Hydro+ mode kinetics

The equation for φQ is a relaxation equation:

(u · ∂)φQ = −γπ(Q)πQ, πQ = −
(
∂s(+)

∂φQ

)
ε,n

γπ(Q) is known from mode-coupling calculation in ‘model H’.

It is universal (Kawasaki function).

γπ(Q) ∼ 2DQ2 for Q < ξ−1 and ∼ Q3 for Q > ξ−1. more

Characteristic rate: Γ(Q) ∼ γπ(Q) ∼ ξ−3 at Q ∼ ξ−1.

Slowness of this relaxation process is behind the divergence of
ζ ∼ 1/Γ ∼ ξ3 and the breakdown of ordinary hydro near CP.
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Towards a general deterministic formalism

An, Basar, Yee, MS, 1902.09517

To embed Hydro+ into a unified theory for critical as well as non-
critical fluctuations we develop a general (deterministic, correla-
tion function) hydrodynamic fluctuation formalism.

Important issue in relativistic hydro –
“equal-time” in the definition of

G(x, y) = 〈φ(x+ y/2)φ(x− y/2) 〉.

Addressed by constructing “confluent”
derivative.

Renormalization can be done analytically , and resulting renor-
malized equations are finite (cutoff-independent).
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Equal time

We want evolution equation for equal time correlator
G = 〈φ(t,x+)φ(t,x−)〉. But what does “equal time” mean?

“Equal time” in 〈φ(x+)φ(x−)〉 depends on the choice of frame.

The most natural choice is local u(x) (with x = (x+ + x−)/2).

Derivatives wrt x at “y-fixed” should take this into account:

using Λ(∆x)u(x+ ∆x) = u(x):

∆x · ∇̄G(x, y) ≡
G(x+ ∆x,Λ(∆x)−1y)−G(x, y) .

not G(x+ ∆x, y)−G(x, y) .
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Confluent correlator, derivative and connection

Confluent two-point correlator:

Ḡ(x, y) = Λ(y/2)G(x, y) Λ(−y/2)T

and its derivative

∇̄µḠAB = ∂µḠAB − ω̄CµAḠCB − ω̄CµBḠAC − ω̊bµa ya
∂

∂yb
ḠAB .

Connection ω̄ makes sure that only the change of φA relative to local
rest frame u is counted.

Connection ω̊ corrects for a possible rotation of the local basis triad ea
defining local coordinates ya. The derivative is independent of ea.

We then define the Wigner transform WAB(x, q) of ḠAB(x, y).
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Scales

Hydro cell size b: coarse-grain quantum operators over scale
b � `mic to leave only slow modes for which quantum fluctuatu-
ations are negligible compared to thermal, i.e., ~ω � kT .
`mic ∼ `mfp, cs/T .

ψ̆ = ( T̆ i0, J̆0 ) are classical stochastic variables.

Hydrodynamic gradients scale L: must be L� b. back

Size of local equlibrium cell `eq ≡ `∗: diffusion length in evolution
time scale, typically τev ∼ L/cs

`∗ ∼
√
γτev ∼

√
γL/cs.

b� L implies the hierarchy:

`mic � b < `∗ � L or T/cs � Λ > q∗ � k (γq2
∗ = csk)
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Matrix equation and diagonalization

After many nontrivial cancellations we find evolution eq.:

u · ∇̄W = −i[L(q),W ]− 1

2
{L̄,W}+ 2TwQ(q) +K ◦W +K′ ◦ q ◦ ∂W

∂q

where expand

Ideal hydro→ L(q) ≡ cs
(

0 qν
qµ 0

)
, L̄ ≡ cs

(
0 ∇̄⊥ν
∇̄⊥µ 0

)
,

Noise→ Q ∼ γq2, and Background→ K ∼ K′ ∼ ∂µuν .

The leading term L(q) is oscillatory: [L(q),W ]AB = (λA − λB)WAB,
where λA = ±cs|q|, 0, 0, 0, eigenvalues of L(q) – linear ideal hydro.

Averaging over times shorter than (cs|q|)−1 leaves only 5 modes in W :
2 sound-sound W++, W−− and 2x2 transverse2 Ŵij . see equations
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Sound-sound correlation and phonon kinetic equation[
(u+ v) · ∇̄+ f · ∂

∂q

]
W+︸ ︷︷ ︸

L+[W+]

= −γLq2(W+ − Tw︸︷︷︸
W (0)

) + K′′︸︷︷︸
∼ ∂µuν , aµ

expand

W+

Three nontrivial observations:

For a phonon q · u(x) = E(q⊥), where E = cs(x)|q⊥|:

v = csq̂⊥,

fµ = −E(aµ + 2vνωνµ)︸ ︷︷ ︸
inertial + Coriolis

−q⊥ν∂⊥µuν︸ ︷︷ ︸
“Hubble”

−∇̄⊥µE .

Rescaling N+ = W+/(wcs|q|) eliminates K′′ terms:

L+[N+] = −γLq2(N+ − T/E︸︷︷︸
E → 0 of eqlbm. BE dist.

)

Contribution of W+ to Tµν matches phonon gas with d.f. N+.
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Renormalization

Expansion of 〈Tµν〉 contains 〈φ(x)φ(x)〉 = G(x, 0) =
∫ d3q

(2π)3 W (x, q).

This integral is divergent (equilibrium G(0)(x, y) ∼ δ3(y)).

W (x, q) ∼ W (0)︸ ︷︷ ︸
Tw

+ W (1)︸ ︷︷ ︸
∂u/q2

+ W̃

(∼“OPE” or gradient expansion) expand
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Renormalized equations

Expand Tµν in fluctuations and average over noise.

Local cutoff-dependent terms absorbed into EOS and visc. coeffs.:

TµνR (x) = (εuµuν+p(ε)∆µν+Πµν)R+
1

w

[(
ċsG̃ee(x)− c2sG̃λλ(x)

)
∆µν + G̃µν(x)

]
︸ ︷︷ ︸

local in G̃, but not in u, ε

.

And we obtain finite (cutoff independent) system of equations:
∂µT

µν
R = 0 ;

u · ∇̄W̃ = . . . .

describing evolution of hydrodynamic variables and their fluctuations.
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In progress

Xin An’s talk at QM, Wednesday:

Add baryon charge.

Merge with Hydro+. Unify critical and non-critical fluctuations.

Hydro Hydro+ Hydro++

-3ξ -2ξ -1ξ ω

ζ
λ

scaling
regime
(model H)

0

Next-to-slowest modes: density-shear and shear-shear correlator.
Extending Hydro+ closer to the CP (shorter gradients or larger ξ).
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Outlook (to-do-list)

Add higher-order correlators for non-gaussian fluctuations.

Connect fluctuating hydro with freezeout kinetics and implement
in full hydrodynamic code and event generator.

Compare with experiment.

First-order transition in fluctuating hydrodynamics?

Connection to action principle (SK) formulation.
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More
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Separation of scales

G(x, y) = 〈φ(x+ y/2)φ(x− y/2) 〉

depends on x slowly (L), but on y – fast (`eq ∼
√
L� L).

Similar to separation of scales in QFT in kinetic regime. (q � k)
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Critical fluctuations

Near CP there is parametric separation of relaxation time scales.

The slowest and thus most out-of-equilibrium mode is charge
diffusion at const p: δ(s/n) ≡ m. back

Rate of m at scale k ∼ ξ−1,

Γ ∼ Dξ−2 ∼ ξ−3,

is of order of that for sound
at much smaller k ∼ ξ−3.

The effect of m fluctuations,
1/
√
V , is (kξ)3/2 = O(1)!

Thus we need 〈mm〉 as
the independent variable(s)
in hydro+ equations.
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Hydro+ vs Hydro: real-time bulk response

Hydrodynamics breaks down for processes faster than Γξ ∼ ξ−3 → Hydro+

Stiffness of eos (sound speed) is
underestimated in hydro (- - -):

cs → 0 at CP, but
only modes with ω � Γξ are
critically soft.

Dissipation during expansion is
overestimated in hydro (- - -):

ζ →∞ at CP, but
only modes with ω � Γξ
experience large ζ.
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Linearized fluctuation equations
back

u · ∂φA = −
(
L + Q + K

)
AB
φB − ξA ,

where

L ≡
(

0 cs∂⊥ν
cs∂⊥µ 0

)
, Q ≡

(
0 0
0 −γη∆µν∂

2
⊥ − (γζ + 1

3
γη)∂⊥µ∂⊥ν

)
K ≡

(
(1 + c2s + ċs)θ 2csaν

1+c2s−ċs
cs

aµ −uµaν + ∂⊥νuµ + ∆µνθ

)
, ξ ≡ (0,∆µκ∂λS̆

λκ)

〈ξA(x+)ξB(x−)〉 = 2TwQ(y)
ABδ

3(y⊥) .

u · ∂GAB(x, y) =−
(
L(y) +

1

2
L + Q(y) + K + Y

)
AC
GCB(x, y)

−
(
− L(y) +

1

2
L + Q(y) + K + Y

)
BC
G C
A (x, y)

+ 2TwQ(y)
ABδ

3(y⊥),
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Correlation matrix evolution equation

back

u · ∇̄W (x; q) = −
[
iL(q)

+ K(a)
,W

]
−
{

1

2
L̄ + Q(q)

+ K(s)
,W

}
+ θW + 2TwQ(q)

+ (∂⊥λuµ)q
µ ∂W

∂qλ

+
1

2
aλ

{(
1−

ċs

c2s

)
L(q)

,
∂W

∂qλ

}
+

∂

∂qλ

(
{
(s)
λ
,W} + [
(a)

λ
,W ]−

1

4
[Hλ, [L

(q)
,W ]]

)
,

where

L(q) ≡ cs
(

0 qν
qµ 0

)
, L̄ ≡ cs

(
0 ∇̄⊥ν
∇̄⊥µ 0

)
, Q(q) ≡

(
0 0

0 γη∆µνq
2 +

(
γζ + 1

3
γη

)
qµqν

)
,

K(s) ≡
(

(1 + c2s + ċs) θ 1
2cs

(1 + 2c2s) aν
1

2cs
(1 + 2c2s) aµ ∆µνθ + θµν

)
, K(a) ≡

 0 − 1−c2s−ċs
2cs

aν

1−c2s−ċs
2cs

aµ −ωµν

 ,

(s)
λ
≡ c2s

2

(
2ωκλq

κ 0
0 ωµλqν + ωνλqµ

)
, 
(a)

λ
≡ c2s

2

(
0 0
0 ωµλqν − ωνλqµ

)
,

Hλ ≡ cs
(

0 ∂νuλ
∂µuλ 0

)
,

θ
µν

=
1

2

(
∂
µ
⊥u

ν
+ ∂

ν
⊥u

µ
)
, θ = θ

µ
µ , ωµν =

1

2
(∂⊥µuν − ∂⊥νuµ) .
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Wigner function equations

go back

Sound-sound

(u± csq̂) · ∇̄W± −
(
±
(
cs −

ċs
cs

)
|q|aµ + (∂⊥µuν)qν + 2c2

sq
λωλµ

)
∂W±
∂qµ

= −γLq2(W± − Tw)−
(

(1 + c2
s + ċs)θ + θµν q̂

µq̂ν ± 1 + 2c2
s

cs
q̂ · a

)
W± ,

Shear-shear

u · ∇̄Ŵ = −2q2γη(Ŵ − Tw1̂) + (∂⊥µuν)qν∇µ(q)Ŵ −
{
K̂, Ŵ

}
+
[
Ω̂, Ŵ

]
,

where

K̂ij ≡ 1

2
θ δij + θµνt(i)µ t

(j)
ν , and Ω̂ij ≡ ωµνt(i)µ t(j)ν , i = 1, 2;
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Large q behavior of W

The part which does not lead to UV divergences:

W̃ = W −W (0) −W (1)

The equilibrium part (the divergent integral renormalizes EOS):

W
(0)
± = Tw and W

(0)
Ti,Tj

= Twδij .

The first background gradient correction
(integral renormalizes viscosities):

W
(1)
± (x, q) =

Tw

γLq2

(
(c2
s − ċs)θ − θµν q̂µq̂ν

)
,

W
(1)
TiTj

(x, q) =
Tw

γηq2

(
c2
sθ δ

ij − θµνt(i)µ t(j)ν
)
.

back
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Universality and mapping of QCD to Ising model

The EOS is an essential input for hydro.

Near CP universality means

PQCD(µ, T ) = −GIsing(h, r) + less singular terms

GIsing(h, r) is universal and known,

but the mapping given by h = h(µ, T ) and r = r(µ, T ) is not.

While h = 0 is the transition line, what is r = 0?

Slope of r = 0⇔ asymmetry of EOS around transition line:
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The skewness, or χ3, can be 0, + or - depending on r = 0 slope.
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Universality of mapping for small mq

In the limit ofmq → 0 the critical point is close to a tricritical point.

The (µ, T )/(h, r) mapping becomes singular in a universal way:
the slope difference vanishes as ∼ m2/5

q . Pradeep, MS, 1905.13247

Consequences:

The r = 0 axis is almost horizontal. Not ⊥ to h = 0.

r = 0 slope is possibly negative (it is in RMM). Then skewness
is negative on the crossover line (h = 0) and below, at freezeout.
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