Spin polarizations in a covariant angular momentum conserved chiral transport model

Shuai Liu
Quark Matter Research Center, Institute of Modern Physics, Chinese Academy of Science In collaboration: Yifeng Sun and Che Ming Ko

New development of hydrodynamics and its applications in Heavy-Ion Collisions Oct. 30-Nov. 2, 2019, Fudan University, Shanghai

Based on work, Liu, Sun, Ko, arXiv:1910.06774

INFN

Outline

1) Background and motivation
2) The side-jump formalism
3) Benchmark calculation
4) Simulation for heavy-ion collision
5) Conclusion and perspective

The Spin Puzzle

$-\mathcal{P}_{y}$: Polarization along the orbital angular momentum direction

$$
\boldsymbol{\mathcal { P }}_{\boldsymbol{z}}=\langle\cos (\theta)\rangle /\left[\alpha_{H}\left\langle\cos ^{2}(\theta)\right\rangle\right]
$$

Polarization along the beam direction

* Some physics beyond the thermal model?
* Ambiguity in local thermal equilibrium?

The Spin Puzzles

$-\mathcal{P}_{y}$: Polarization along the orbital angular momentum direction

$$
\mathcal{P}_{\boldsymbol{z}}=\langle\cos (\theta)\rangle /\left[\alpha_{H}\left\langle\cos ^{2}(\theta)\right\rangle\right]
$$

Polarization along the beam direction

- Some physics beyond the thermal model?
* Ambiguity in local thermal equilibrium?
* Previous chiral kinetic transport seems indicates some new features, but failed for $\boldsymbol{P}_{\boldsymbol{y}}$
* Several conceptually important questions in chiral kinetic framework remain to be solved

Paradox: Chiral Kinetic Equations or Newton’s first Law?

*Chiral kinetic equation:
$\dot{\mathbf{r}}^{\prime}=\frac{\hat{\mathbf{p}}^{\prime}+2 \lambda p^{\prime}\left(\hat{\mathbf{p}}^{\prime} \cdot \mathbf{b}^{\prime}\right) \boldsymbol{\omega}}{1+2 \lambda p^{\prime}\left(\boldsymbol{\omega} \cdot \mathbf{b}^{\prime}\right)}$

- $v_{z} \neq 0$ due to anomalous velocity along the $\boldsymbol{\omega}$

*Newton's First Law:

- $v_{z}=0$ since particle should move straight line

Contradictions!

How to construct a theoretical formalism for CVE to be consistent with newton's first law?

* A thought experiment
- Prepare a system of particles with vorticity
- Turn off all interactions!
- Inject a test particle with \mathbf{v} along the x direction into the system
- How should the particle move?

Challenge: total angular momentum conservation

*Power of total angular momentum conservation

- Chiral kinetic equation by $\mathbf{J}=\mathbf{L}+\mathbf{S}$ conservation in external force:

$$
\begin{aligned}
& \frac{d \mathbf{J}}{d t}=\frac{d\left(\mathbf{r} \times \mathbf{p} \pm \frac{\hat{\mathbf{p}}}{2}\right)}{d t}=\mathbf{r} \times \mathbf{F} \\
& \dot{\mathbf{r}}=\hat{\mathbf{p}} \pm \dot{\mathbf{p}} \times \frac{\mathbf{p}}{2 p^{3}}=\hat{\mathbf{p}}+\dot{\mathbf{p}} \times \mathbf{b}
\end{aligned}
$$

Sun, Ko, Li, 2016

- Statistical mechanics from conserved quantities:

Polarization: $\langle S\rangle=\omega /(4 T)$

* Interactions between partons in the QGP : scattering process
* Does it conserve J ?

$$
\mathbf{L}_{\text {out }}+\boldsymbol{S}_{\text {out }} \neq 0 \text {, Since } \boldsymbol{S}_{\text {out }} \neq 0
$$

J is not conserved!

J Conservation By Side-Jump

Chen, Son, Stephanov, Yee, Yin, PRL, 2014

J Conservation By Side-Jump

Chen, Son, Stephanov, Yee, Yin, PRL, 2014
Chen, Son, Stephanov, PRL 2015
*Conservation of \mathbf{J} in CM frame

Relatively Simple

* How to boost this results to the general Lab frame?

Non-trivial for chiral fermion

* Requiring the $J^{\prime}=\Lambda^{T} J \Lambda$ covariant and $\boldsymbol{s}=\lambda \widehat{\mathbf{p}}$ in all frames leads to side-jump boost:

$$
x^{\prime \mu}=\Lambda_{\alpha}^{\mu} x^{\alpha}+\Delta_{\tilde{n} n^{\prime}}^{\mu}
$$

*A side-jump term $\Delta_{\tilde{n} n^{\prime}}$ appear:

$$
\Delta_{\tilde{n} n^{\prime}}^{\mu}=\lambda \frac{\epsilon^{\mu \alpha \beta \gamma} p_{\alpha}^{\prime} \tilde{n}_{\beta} n_{\gamma}^{\prime}}{\left(p^{\prime} \cdot \tilde{n}\right)\left(p^{\prime} \cdot n^{\prime}\right)}
$$

$\otimes \Delta_{\tilde{n} n^{\prime}} \perp \mathbf{p}^{\prime}$, and $\Delta_{\tilde{n} n^{\prime}} \perp \mathbf{P}_{\mathrm{t}}^{\prime}$ in the lab frame

Generalization Required for Transport Simulation

* Idealized zero impact parameter
- Permittable phase space for $\mathbf{p}_{\text {out }}$ is a 3D sphere
- Non-jump in position in CM frame
* Collision can happen between partons with the same helicity

3D Scattering

*Finite impact parameter b Liu, Sun, Ko, arXiv:1910.06774

- Permittable phase space for $\mathbf{p}_{\text {out }}$ is a 2D circle lie in the plane perpendicular to J .
- Jump in position in CM frame
- Other new features, still numerical feasible
*Collision can happen between partons with same or different helicity
*Using the same side-jump boost to obtain results in the LAB frame.
$>J^{\mu v}=x^{\mu} p^{v}-x^{v} p^{\mu}+S^{\mu v}$ conserved in realistic simulation!

How we address the paradox and go beyond

*The kinetic equation in vortical flows in our approach (No B field):

$$
\dot{\mathbf{r}}^{\prime}=\frac{\hat{\mathbf{p}}^{\prime}+2 \lambda p^{\prime}\left(\hat{\mathbf{p}}^{\prime} \cdot \mathbf{b}^{\prime}\right) \boldsymbol{\omega}}{1+2 \lambda p^{\prime}\left(\boldsymbol{\omega} \cdot \mathbf{b}^{\prime}\right)} \quad \square \quad \dot{\boldsymbol{r}}=\widehat{\mathbf{p}}
$$

Usual cross section

*Without interaction (no collision), all particles move in straight line, newton's first law recovered
*With collisions, side-jump collisions will transport the axial charge along the ω direction and the anomalous currents can reproduce chiral vortical effects.

The paradox is solved by J conserved scattering

A Box Calculation as Benchmark

* Box initally at $5 \times 5 \times 5 \mathrm{fm}, \omega=0.012 / \mathrm{fm}(z$ direction), $\mathrm{T}=0.3 \mathrm{GeV}$, then, free expand
*Check conservation angular $J=\sum_{i} r_{i} \times p_{i}+\lambda_{i} \hat{p}_{i}$

$$
j_{R / L}^{\mu}(x)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} p}\left(p^{\mu} f_{R / L}+S^{\mu \nu} \partial_{\nu} f_{R / L}\right)
$$

* In addition to the normal spin term, there is an additional magnetization term (orbital term) required by the covariance of the $j_{L / R}^{\mu}$ of chiral fermion.
*The space component of the $j_{R / L}^{\mu}$ is defined as the total "spin" so that polarization can be related to \mathbf{j}_{5} as

$$
\mathcal{P}=\int d^{3} x \mathbf{j}_{5}(x) / \int d^{3} x n(x)
$$

* Recover thermal benchmark, well defined Lorentz transformation

Spin in proton also has an orbital contribution

Transport Simulation for Heavy-ion Collision

$\int d z n_{5} / n$
Large axial charge redistribution according to the vorticity through side-jump collisions

total

Transport Simulation for Heavy-ion Collision

 $d z n_{5} / n$Large axial charge redistribution according to the vorticity through side-jump collisions

* Both spin part and orbital part are important for total polarization
* Boost affects the result

How Axial charge Redistribution and Boost Affect Polarization?

* Polarization is:

$$
\mathcal{P}=\int d^{3} x \mathbf{j}_{5}(x) / \int d^{3} x n(x)
$$

$j_{5}^{\mu}=\left(n_{5}, \mathbf{j}_{5}\right)$ is a well defined four-vector with the time component

$$
\psi\left(\mathbf{j}_{5}\right)_{\|}=\gamma\left(\left(\mathbf{j}_{5}\right)_{\|}-v n_{5}\right),\left(\mathbf{j}_{5}\right)_{\perp}=\left(\mathbf{j}_{5}\right)_{\perp}
$$

* With the nontrivial distribution of n_{5}, it affects the space part of \mathbf{j}_{5}, thus the polarization

$>$ Without n_{5}, we do not get this trend.
$>$ Does this trend provide us indications for the axial charge redistribution?

Conclusion and perspective

*Conclusion

- Construct a chiral transport approach that respects the Newtown's first law and total angular momentum, which also can recover thermal limit
- There is "orbital" contribution to polarization in addition to spin contribution, which plays an important role
- Axial charge redistribution and boost are also essential

*Perspective

- How to perform angular momentum conserved hadronization to convert parton spin to Lambda spin
- Mass effects for the side-jump approach
- More sophisticated medium evolution that can recover lattice EoS

Transport Simulation for Heavy-ion Collision

Background

$>$ Proton radius puzzle
Slides From Xingbo Zhao and Siqi Xu at IMP working on proton strucutres.

* Elastic electron scattering established the extended nature of the proton, $[$ R. Hofstadter, Nobel Prize 1961]
* Different experiments give the different radius.

$>$ Spin crisis

In 1988s, EMC(European Muon Collaboration) found the contribution of spin of quark is smaller than expected.

Generalization Required for Transport Simulation

* Idealized zero impact parameter
- Permittable phase space for $\mathbf{p}_{\text {out }}$ is a 3D sphere
- Non-jump in position in CM frame
* Collision can happen between partons with same helicity

*Finite impact parameter b Liu, Sun, Ko, ArXiv:1910.06774
- Permittable phase space for $\mathbf{p}_{\text {out }}$ is a 2D circle lie in the plane perpendicular to J.
- Jump in position in CM frame
- Other new features, still numerical feasible
*Collision can happen between partons with same or different helicity
*Using the same side-jump boost to obtain results in LAB frame.

A jump
$>J^{\mu \nu}=x^{\mu} p^{v}-x^{v} p^{\mu}$ conservation realistic
$S^{\mu \nu}=\lambda \frac{\epsilon^{\mu \nu \alpha \beta} p_{\alpha} n_{\beta}}{p \cdot n}$

