

Observation of a charmonium-like state in $e^+e^- \rightarrow D_s^+D_{s1}(2536)^-$ at Belle

[arxiv: 1911.00671]

Sen Jia Fudan University Dec. 09th, 2019

Outline

- Belle experiment
- Motivation
- Analysis strategy and results
- Discussion and summary

Belle experiment and data samples

Quarknium

- Quarkonium: $q\bar{q}$, the simplest system of a hadron.
- Below $D\overline{D}/B\overline{B}$ thresholds both charmonium and bottomonium are successful stories of QCD.
- But there are many exotic states observed in the past decade, and they are hard to fit in the two families.
 -4-

Various interpretations of the exotic states

Non-standard hadrons

Besides above models, there still are screened potential, cusps effect, final state interaction ...

<u>High Priority:</u>

- Identify most prominent component in wave function
- Seek unique picture describing all XYZ states, not state-by-state

Nature Reviews Physics 1, 480 (2019)

Y states

- Y(4008), Y(4260), Y(4360), Y(4630), Y(4660): $J^{PC} = 1^{--}$
- Strong coupling to hidden-charm final states in contract to the vector charmonium states in the same energy region [ψ(4040), ψ(4160), ψ(4415)], which couple dominantly to open-charm meason pairs.
- Many theoretical interpretations: tetraquark, molecule, hybrids, or hadrocharmonia?
- Observed in Initial state radiation processes (Belle and Babar) and e⁺e⁻ annihilations in the charmonium energy region (BESIII)

$M(\pi^+\pi^-)$ in Y(4260) and Y(4660) signal region

• $Y(4260) \rightarrow f_0(980)(\rightarrow \pi^+\pi^-)J/\psi$, $Y(4660) \rightarrow f_0(980)(\rightarrow \pi^+\pi^-)\psi(2S)$ $f_0(980)$ has a ss component, and J/ψ has a cc component.

• It is natural to search for such Y states with a quark component of $(c\bar{s})(\bar{c}s)$, e.g. $D_s D_{s1}$ (2536).

Analysis method

$e^+e^- \rightarrow \gamma_{ISR} D_s^+ D_{s1} (2536)^- (\rightarrow \overline{D}^{*0} K^- / D^{*-} K_S^0)$

We require full reconstruction of the γ_{ISR} , D_s^+ , and K^-/K_S^0 . • $D_s^+ \rightarrow \phi \pi^+$, $\overline{K}^{*0}K^+$, $K_s^0K^+$, $K^+K^-\pi^+\pi^0$, $K_s^0\pi^0K^+$, $K^{*+}K_s^0$, $\eta \pi^+$, and $\eta' \pi^+$

• For the signals, the spectrum of the mass recoiling against the $D_s^+K^-\gamma_{ISR}$ system should be accumulated at the \overline{D}^{*0}/D^{*-} nominal mass.

$$M_{rec}(\gamma_{ISR}D_{s}^{+}K^{-}/K_{s}^{0}) = \sqrt{(E_{c.m.}^{*} - E_{\gamma_{ISR}D_{s}^{+}K^{-}/K_{s}^{0}}^{*})^{2} - (p_{\gamma_{ISR}D_{s}^{+}K^{-}/K_{s}^{0}}^{*})^{2}}$$

• To improve the $M_{rec}(\gamma_{ISR})$ resolution, $M_{rec}(\gamma_{ISR}D_s^+K^-/K_s^0)$ is constrained to be the nominal mass of the \overline{D}^{*0}/D^{*-} . As a result, the resolution of $M_{rec}(\gamma_{ISR}) \equiv M(D_s^+D_{s1}(2536)^-)$ is drastically improved (~180MeV \rightarrow ~ 5MeV).

Data samples:

√s (GeV)	Luminosity (fb ⁻¹)
10.52	89.5±1.3
10.58	711±10
10.867	121.4±1.7
Total	921.9±12.9

The invariant mass distribution for D⁺_s candidates

- Since the intrinsic width of the D_s^+ could be neglected, a double Gaussian function is used to fit the D_s^+ mass spectrum.
- The purity is $N_{sig}/(N_{sig} + N_{bkg})=64\%$.

The recoil mass spectrum against $\gamma_{ISR}D_s^+K^-/K_S^0$

- $M_{rec}(\gamma_{ISR}D_s^+K^-/K_s^0)$ distribution is making before applying the \overline{D}^{*0}/D^{*-} mass constraint.
- The yellow histogram shows the normalized $D_{s1}(2536)^-$ mass sidebands (see below).
- Due to the poor mass resolution, the \overline{D}^{*0}/D^{*-} signal is very wide. -11-

The recoil mass spectrum against $\gamma_{ISR}D_s^+$

 $D_{s1}(2536)^-$ signal: Double Gaussian

The combinatorial backgrounds: threshold function

- $M_{rec}(\gamma_{ISR}D_s^+)$ distribution is making after applying the \overline{D}^{*0}/D^{*-} mass constraint.
- The yellow histogram shows the normalized D_s^+ mass sidebands.
- The fit yields $275\pm32 D_{s1}(2536)^-$ signal events with the statistical significance of 8.0 σ .

Final mass spectrum $M(D_s^+D_{s1}(2536)^-)$

After applying the \overline{D}^{*0}/D^{*-} mass constraint

An unbinned simultaneous likelihood fit:

- Signal: a BW convolved with a Gaussian function, then multiplied by an efficiency function
- $D_{s1}(2536)^-$ mass sidebands: a threshold function
- $e^+e^- \rightarrow D_s^{*+}D_{s1}(2536)^$ background contribution: a threshold function
- A non-resonant contribution: a two-body phase space form

 $M=(4625.9^{+6.2}_{-6.0}(\text{stat.}) \pm 0.4(\text{syst.}) \text{ MeV/c}^2$ $\Gamma = (49.8^{+13.9}_{-11.5}(\text{stat.}) \pm 4.0(\text{syst.}) \text{ MeV}$ $\Gamma_{ee} \times \mathcal{B}(Y \to D_s^+ D_{s1}(2536)^-) \times \mathcal{B}(D_{s1}(2536)^- \to \overline{D}^{*0}\text{K}^-) = (14.3^{+2.8}_{-2.6}(\text{stat.}) \pm 1.5(\text{syst.}) \text{ eV}$

One possible background is from $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$, where the photon from the D_s^{*+} remains undetected. No obvious structure is observed in the $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$.

Cross section

The peak value of the $\sigma \times Br$ at $M(D_s^+D_{s1}(2536)^-) \sim 4.63 \text{ GeV/c}^2$ is about (0.18± 0.06) nb.

Y(4630) = Y(4660)?

-15-

What is Y(4660)?

- Charmonium?
- Molecule $[f_0(980)\psi', \overline{\Lambda}_c\Lambda_c]$?
- Hadron-charmonium?
- Tetraquark state?
- Hybrid?

Experimental measurements:

Y(4660) →

- $> D_s * D_{s0}(2317)$
- $> D_{s}D_{s1}(2460)$
- $> D_s * D_{s1} (2460)$
- $> D_{s}D_{s2}(2573)$

May these rates be estimated according to $D_sD_{s1}(2536)$?

at Belle with ISR; and at BESIII with data to be taken in 2019-2020 running year (E_{cm} =4.62, 4.64, 4.66, 4.68, 4.70 GeV, 500 pb⁻¹ at each energy)

Why does Y(4660) couple to ss strongly? Why does Y(4660) couple to charmed baryon strongly?

Comparison between $D_1(2420)\overline{D}$ and $D_{s1}(2536)^-D_s^-$ Slides from C. Z. Yuan

Do Y(4360)/Y(4390)/ ψ (4415) & Y(4630)/Y(4660) have similar structures?

Other $j_l^P = \frac{3}{2}^+$ states: $D_2(2460)\overline{D}$ and $D_{s2}(2573)^-D_s^-$

Do Y(4360)/Y(4390)/ ψ (4415) & Y(4630)/Y(4660) have similar structures?18-

Summary

- ➤ We observe the first vector charmonium-like state decaying to a charmed-antistrange and anticharmed-strange meson pair $D_s^+ D_{s1}(2536)^-$ with a signal significance of 5.9σ.
- ➤ Inspired by our discovery, the studies of $D_s^+ D_{s2}^* (2573)^-$, $D_s^{*+} D_{s0} (2317)^-$, and $D_s^{(*)+} D_{s1} (2460)^-$ should be performed.
- Belle II started data taking on 25 March with its full detector. Belle II will reach 50 ab⁻¹ by 2027, which will provide greater sensitivity and precise measurements in hadron physics.

Thanks for your attentions!