Observation of Electroweak Production of Two Jets and a Z-boson Pair with the ATLAS Detector at the LHC

Jing Li

December 9, 2019

Shanghai Jiao Tong University

- Vector boson scattering, unitarity violation at TeV scale
- VBS \rightarrow measurable key process linked with electroweak symmetry breaking whether the discovered higgs boson is fully responsible for EWSB
- relative small electroweak event rates

Motivation???

status of December 2019

Channel	Observed (Ex ATLAS	pected) Significance CMS	Challenges
ssWW	6.5(4.9) σ	5.5(5.7) σ	 ♦ first observation of VBS in this channel ♦ very good EW/QCD ratio ♦ mostly experimental backgrounds
WZ	5.3(3.2) σ	1.9(2.7) σ	 ◊ similar cross-section as ssWW ◊ but larger QCD background
ZZ	5.5(4.3) σ	2.7(1.6) σ	\diamond very clean $\ell\ell\ell\ell\ell jj$ channel \diamond low background but small cross section

- CMS study in 2017: 35.9 fb⁻¹ pp data @ 13 TeV, only consider $ZZ \rightarrow \ell \ell \ell \ell \ell j j$
- LHC Run2 data @ 13 TeV allows to explore VBS with precision

ATLAS Run2

• full Run2 dataset: 139 fb⁻¹ pp data @ 13 TeV

Analysis Overview

- use ATLAS full Run2 dataset, 139 fb⁻¹
- include both VBS $ZZjj \rightarrow \ell\ell\ell\ell\ell jj$ and $ZZjj \rightarrow \ell\ell\nu\nu jj$ channels
- *lllljj*: clean, low background
- *llvvjj*: larger branch ratio, complex backgrounds
- Gradient Boosted Decision Tree (BDTG) is used as the final discriminator to separate the signal and backgrounds
- typical diagrams for the production of ZZjj, including the relevant EW VBS diagrams (first row) and QCD diagrams (second row):

[*lllljj*] Event Selections

- leptons:
 - 2 opposite sign same flavor (OSSF) lepton pairs with the smallest

$$|m_{\ell^+\ell^-} - m_Z| + |m_{\ell'^+\ell'^-} - m_Z|$$

- 66 $< m_{\ell^+\ell^-} <$ 116 GeV, $\Delta R(\ell \ell) >$ 0.2
- jets:
 - 2 most energetic jets with $Y_{j_1} \times Y_{j_2} < 0$
 - $m_{jj} > 300 \text{ GeV}, \Delta Y(jj) > 2$

[*lllljj*] QCD ZZjj Background

- reverse m_{jj} and $\Delta Y(jj)$ selections
- $m_{jj} < 300 \text{ GeV or } \Delta Y(jj) < 2$

- fake factor method is used for jet-enriched samples: $t\bar{t}$, Z + jets...
- good lepton: objects passing standard lepton selections
- poor lepton: objects not fully passing standard lepton selections
- fake factor:

fake factor
$$f = \frac{N_{\text{good lepton}}}{N_{\text{poor lepton}}}$$

• fake contribution in the signal region:

$$N_{ ext{fake}} = (N_{gggp} - N_{gggp}^{ZZ}) imes f - (N_{ggpp} - N_{ggpp}^{ZZ}) imes f^2$$

$[\ell\ell\nu\nu jj]$ Event Selections

- leptons:
 - = 1 OSSF lepton pairs, 80 $< m_{\ell^+\ell^-} <$ 100 GeV
 - veto b-jet
- jets:
 - 2 most energetic jets with $Y_{j_1} \times Y_{j_2} < 0$
 - $m_{jj} > 400 \text{ GeV}, \Delta Y(jj) > 2$
- E_T^{miss} :
 - E_T^{miss} -significance> 12 for SR
 - $E_T^{miss} > 130$ GeV for fiducial volumne (FV)

$[\ell\ell\nu\nu jj]$ WZ Background

- $WZ \rightarrow \ell \nu \ell \ell$ events, where one lepton is not reconstructed
- 3ℓ CR selections:
 - a lepton pair near Z mass
 - a good 3rd lepton
 - other requirements to supress other backgrounds E_T^{miss} -significance> 3...
 - at least 2 energetic jets (veto b-jet)
- estimate the WZ contribution in SR:

$$N_{WZ,data}^{2\ell SR} = N_{WZ,MC}^{2\ell SR} imes$$

[*llvvjj*] WZ Background (cont')

- high purity 92%, and good DATA/MC agreement
- scale factor = 0.81 ± 0.03

$[\ell \ell \nu \nu j j]$ non-resonant $\ell \ell$ Background

- $e\mu$ CR: to study $t\bar{t}$, WW, Wt, $Z \rightarrow \tau \tau$
- *ϵ*-factor represents the reconstruction
 efficiency difference between electrons and
 muons (selecting *ee* and μμ events after the Z
 mass cut):

$$\epsilon = \sqrt{\frac{\textit{N}_{ee}}{\textit{N}_{\mu\mu}}}$$

 Apply the ε-factor on the eµ data events(changing SR lepton pair to a eµ pair):

$$\begin{array}{lll} \textit{N}_{\textit{SRee}}^{\textit{est.}} &=& \frac{1}{2} \times \epsilon \times \textit{N}_{e\mu}^{\textit{data,sub}} \\ \textit{N}_{\textit{SR}\mu\mu}^{\textit{est.}} &=& \frac{1}{2} \times \frac{1}{\epsilon} \times \textit{N}_{e\mu}^{\textit{data,sub}} \end{array}$$

- MC closure check: use only non-resonant $\ell\ell$ MC samples to check if the method is duable

channel	estimated from $e\mu {\rm CR}$	selected from \ensuremath{SR}
ee	13.99 ± 0.55	13.80 ± 0.83
$\mu\mu$	15.75 ± 0.61	14.95 ± 0.86

- highly suppressed by the E_T^{miss} -significance cut
- use a exponential function to fit Data $MC_{non Z+jets}$ E_T^{miss} -significance distribution
- extrapolate from the control region (3 < E_T^{miss} -significance < 4.7) to the validation region (5 < E_T^{miss} -significance < 10) and the signal region (E_T^{miss} -significance > 10)
- final estimation in the signal region 0.28 + 1.5 0.28

Inclusive Cross Section Measurement

 Observed data and expected signal and background yields in 139 fb⁻¹ of data in the *ℓℓℓℓjj* and *ℓℓννjj* signal regions:

Process	lllljj	llvvjj
EW ZZjj	20.6 ± 2.5	12.30 ± 0.65
QCD <i>ZZjj</i>	77 ± 25	$17.2\ \pm 3.5$
QCD ggZZjj	$13.1\pm~4.4$	$3.5\ \pm 1.1$
Non-resonant- $\ell\ell$	-	21.4 ± 4.8
WZ	-	$22.8 \pm 1.1 $
Others	$3.2\pm~2.1$	1.15 ± 0.89
Total	114 ± 26	$78.4\ \pm 6.2$
Data	127	82

Cross section in the fiducial volume

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
llljj	$1.27\pm0.12({\rm stat})\pm0.02({\rm theo})\pm0.07({\rm exp})\pm0.01({\rm bkg})\pm0.03({\rm lumi})$	$ 1.14 \pm 0.04 (stat) \pm 0.20 (theo)$
llνvjj	$1.22\pm0.30({\rm stat})\pm0.04({\rm theo})\pm0.06({\rm exp})\pm0.16({\rm bkg})\pm0.03({\rm lumi})$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

Observation of EWK ZZjj

	$\mu_{\rm EW}$	$\mu_{ m QCD}^{\ell\ell\ell\elljj}$	Significance Obs. (Exp.)
lllljj	$1.5~\pm~0.4$	$0.95\pm$ 0.22	5.48 (3.89) σ
llvvjj	0.7 ± 0.7	fixed	1.15 (1.80) σ
Combined	1.35 ± 0.3	4 0.96 ± 0.22	5.52 (4.29) σ

- the first observation of EW ZZjj production is an important milestone for studies of EW VVjj production, which corresponds to a statistical significance of 5.5 σ
- cross-sections for inclusive production of ZZ plus two jets, as well as the observed signal strength of the EW production, are reported
- the differential cross section will be measured in the next round of analysis

Thank You!

	ℓℓℓℓjj	llvvjj	
Electrons	ρ_T > 7 GeV. $ \eta $ < 2.47 $ d_0/\sigma_{d_0} $ < 5 and $ z_0$ \times sin $\theta $ < 0.5 mm		
Muons	$\begin{array}{l} \rho_T > 7 {\rm GeV}, \eta < 2.7 \\ d_0/\sigma_{d_0} < 3 {\rm and} z_0\times\sin\theta < 0.5 {\rm mm} \end{array}$		
Jets	$p_{\ensuremath{\mathcal{T}}} >$ 30 (40) GeV for $ \eta <$ 2.4 (2.4 $< \eta <$ 4.5)	$p_{\ensuremath{\mathcal{T}}} >$ 60 (40) GeV for the leading (sub-leading) jet	
ZZ selection	$p_T>20, 20, 10$ GeV for the leading, sub-leading and third leptons Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-} - m_Z + m_{\ell^+\ell^-} - m_Z $ $\begin{array}{c} m_{\ell^+\ell^-} > 10 \ \text{GeV} \ \text{for lepton pairs} \\ \Delta R(\ell, \ell') > 0.2 \\ 66 < m_{\ell^+\ell^-} < 116 \ \text{GeV} \end{array}$	$\rho_T > 30$ (20) GeV for the leading (sub-leading) lepton One OSSF lepton pair and no third leptons $80 < m_{\ell^+ \ell^-} < 100$ GeV No b-tagged jets \mathcal{E}_T^{miss} significance > 12	
Dijet selection	Two most energetic jets with $y_{j_1} \times y_{j_2} < 0$ $m_{jj} > 300$ GeV and $\Delta y(jj) > 2$ $m_{jj} > 400$ GeV and $\Delta y(jj) > 2$		

$$S = 2 \ln \frac{\mathcal{L}(\vec{\epsilon} = \sum \vec{\epsilon_i})}{\mathcal{L}(\vec{\epsilon} = 0)}$$

- *L*(*e* = ∑ *e*): the likelihood of the hypothesis under test that the true value (*e*) of the missing transverse energy is equal to observed value (∑ *e*)
- $\mathcal{L}(\vec{\epsilon} = 0)$: the likelihood of the null hypothesis

Systematic Uncertainty Ranking

