高能重离子碰撞中矢量介子的自旋排列

$$
\begin{gathered}
\text { 周晨升 (复旦大学) } \\
2019-12-09
\end{gathered}
$$

Introduction

- Initial angular momentum $\boldsymbol{L} \sim 10^{3} \hbar$ in non-central heavy-ion collisions at RHIC.
- Baryon stopping transfers this angular momentum, in part, to the fireball.
- Due to vorticity and spin-orbit coupling, particle's spin may align with L.
- Spin alignment/polarization is a sensitive probe to vortical structure of QGP, fluid property and particle production mechanisms.

*Zuo-Tang Liang and Xin-Nian Wang, PRL 94 102301(2005)
Sergei A. Voloshin, nucl-th/0410089, and many others

Spin Alignment

- Spin alignment can be determined from the angular distribution of the decay products*:

$$
\frac{d N}{d\left(\cos \theta^{*}\right)}=N_{0} \times\left[\left(1-\rho_{00}\right)+\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*}\right]
$$

- A deviation of ρ_{00} from $1 / 3$ signals net spin alignment.
*K. Schilling el al., Nucl. Phys. B 15, 397 (1970)

$K^{* 0}$ and ϕ

Characteristic of $\mathrm{K}^{* 0}$ and ϕ :

Species	$\mathrm{K}^{* 0}$	φ
Quark content	$\overline{\mathrm{ds}}$	$\overline{\mathrm{s}}$
Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	896	1020
Lifetime $(\mathrm{fm} / \mathrm{c})$	4	45
Spin (JP)	$1-$	$1-$
Decays	$\mathrm{K} \pi$	KK
Branching ratio	49%	66%

- Originate predominantly from primordial production, thus less affected by feed-down compared to \wedge and anti- \wedge.
- Spin-1 particles, daughters' polar angle distribution is even function. No local cancellation associated with odd function (the case for spin-1/2 particles e.g. \wedge) when integrate over time and phase space
- Additional access to strange and light quark polarization (in particular for ϕ meson, clean access to strange quark polarization).

Hadronization Scenarios and Spin Alignment

- Recombination of polarized (anti)quarks: $\rho_{00}<1 / 3$

$$
\rho_{00}^{\phi(\text { rec })}=\frac{1-P_{s}^{2}}{3+P_{s}^{2}}, \quad \rho_{00}^{K^{\prime *}(\text { rec })}=\frac{1-P_{q} P_{s}}{3+P_{q} P_{s}}
$$

- Fragmentation of polarized quarks: $\rho 00>1 / 3$

$$
\rho_{00}^{\phi(f a z)}=\frac{1+\beta P_{s}^{2}}{3-\beta P_{s}^{2}}, \quad \rho_{00}^{K^{\circ 0}(f f a z)}=\frac{f_{s}}{n_{s}+f_{s}} \frac{1+\beta P_{q}^{2}}{3-\beta P_{q}^{2}}+\frac{n_{s}}{n_{s}+f_{s}} \frac{1+\beta P_{s}^{2}}{3-\beta P_{s}^{2}}
$$

$P_{q}=-\frac{\pi}{4} \frac{\mu p}{E\left(E+m_{q}\right)}$ is the global quark polarization
$P_{\bar{q}}^{\text {frag }}=-\beta P_{q}$ is the polarization of the (anti-)quark created in the fragmentation process
n_{s} and f_{s} are the strange quark abundances relative to up or down quarks in QGP and quark fragmentation, respectively.

Hadronization Scenarios and Spin Alignment

- Quark spin polarization in vorticity and EM fields:

$$
\begin{gathered}
\rho_{00}^{\phi} \approx \frac{\frac{1}{3}-\frac{4}{9}\left\langle P_{\bar{\Lambda}}^{y} P_{\Lambda}^{y}\right\rangle}{3}-\frac{1}{27 m_{s}^{2}}\left\langle\mathbf{p}^{2}\right\rangle_{\phi}\left\langle\varepsilon_{z}^{2}+\varepsilon_{x}^{2}\right\rangle \\
c_{\Lambda} \sim 6 \times 10^{-5} \\
\frac{c_{E} \sim 10^{-5}}{243 m_{s}^{4} T_{\text {eff }}^{2}}\left\langle\mathbf{p}^{2}\right\rangle_{\phi}\left\langle E_{z}^{2}+E_{x}^{2}\right\rangle \\
c_{E}
\end{gathered} \quad \begin{gathered}
c_{\varepsilon} \sim 10^{-5}-10^{-6} \\
\sqrt{s} \leq 200 \mathrm{GeV}
\end{gathered}
$$

Xin-Li Sheng, Lucia Oliva, and Qun Wang, arXiv:1910.13684

Obtaining yields of vector mesons

Invariant mass distribution before/after background subtraction
Au+Au 200 GeV, Centrality: 40\%-50\%

$$
B W\left(\mathrm{~m}_{i n v}\right)=\frac{1}{2 \pi} \frac{A \Gamma}{\left(m-m_{\phi}\right)^{2}+(\Gamma / 2)^{2}}
$$

where Γ is the width of the distribution and A is the area of the distribution. A is the raw yield scaled by the bin width ($=0.001 \mathrm{GeV} / \mathrm{c}^{2}$).

1ф mesons

Fitting of a single $\mathrm{P}_{T} \& \cos \theta^{*}$ bin.
Au+Au 200 GeV
Centrality: 40\%-50\% рт: 1.2~1.8 GeV/c $\cos \theta^{*}: 1 / 7 \sim 2 / 7$

poo Extraction

- With yield of ϕ for different bins, we can fit the yield distribution and obtain poo using
$\frac{d N}{d\left(\cos \theta^{*}\right)}=N_{0} \times\left[\left(1-\rho_{00}\right)+\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*}\right]$
θ^{*} is the angle between the polarization direction \boldsymbol{L} and the momentum direction of a daughter particle in the rest frame of the parent vector meson.
- What we extracted here is the $\rho_{o o}$ before event plane resolution

Fitting of ϕ yield vs. $\cos \theta^{*}$
Au+Au 200 GeV
Centrality: 40-50\% рт: 1.2-1.8 GeV/c

$$
\rho_{00}^{o b s}=0.3785+/-0.0048
$$ correction (observed poo).

Event Plane Resolution Correction

- The correction is applied with the formula* for $S=1$ particles:

$$
\rho_{00}^{\text {rec }}-\frac{1}{3}=\frac{4}{1+3 R}\left(\rho_{00}^{o b s}-\frac{1}{3}\right)
$$

where

$$
R=\langle\cos 2 \Delta\rangle=\left\langle\cos 2\left(\psi^{o b s}-\psi^{\text {real }}\right)\right\rangle
$$

is the event plane resolution.

Verifying the correction formula : events are generated by Pythia* with Δ following the probability density function**:
$P(\Delta)=\frac{1}{2 \pi}\left[e^{\frac{-\chi^{2}}{2}}+\sqrt{\frac{\pi}{2}} \chi \cos (\Delta) e^{-\frac{\chi^{2} \sin ^{2}(\Delta)}{2}} \times\left(1+\operatorname{erf}\left(\chi \cos \frac{\Delta}{\sqrt{2}}\right)\right)\right]$
$\rho_{0 o}$ are at expected values after correction.

[^0]** S. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996)

Acceptance Correction

- The acceptance correction can be included by using the corrected angular distribution to extract ρ_{00} :
$\left[\frac{d N}{d \cos \theta^{*}}\right]_{|\eta|<1} \propto\left(1+\frac{B^{\prime} F}{2}\right)+\left(A^{\prime}+F\right) \cos ^{2} \theta^{*}+\left(A^{\prime} F-\frac{B^{\prime} F}{2}\right) \cos ^{4} \theta^{*}$
where:

$$
A^{\prime}=\frac{A(1+3 R)}{4+A(1-R)}, \quad B^{\prime}=\frac{A(1-R)}{4+A(1-R)}
$$

here $A=\left(3 \rho_{00}^{\text {real }}-1\right) /\left(1-\rho_{00}^{\text {real }}\right), \mathrm{R}$ is the resolution. F describes the effect of acceptance, which can be obtained from simulations.

A Monte Carlo simulation to verify the acceptance correction procedure.
ρ_{00} are at expected values after correction.

The STAR Detector and Analysis Details

STAR is the only experiment currently operating at RHIC.

- Large acceptance (2π azimuthal angle coverage).
- Excellent particle identification capabilities.
- Event plane reconstruction by ZDCSMD, BBC (1storder EP) or by TPC (2nd-order EP).

System
$\mathrm{Au}+\mathrm{Au}$

Energy
11.5, 19.6, 27, 39, 62.4, 200 GeV (for ϕ) $54.4,200 \mathrm{GeV}\left(\right.$ for K^{*})

Number of	
good events	$8.5,19.4,37.9,117,45.3$, $1560 \mathrm{M}($ for $\phi)$ $520,350 \mathrm{M}\left(\right.$ for $\left.\mathrm{K}^{*}\right)$

Rapidity

$$
|y|<0.5
$$

Quantization axis

Background

1st-order EP (for ϕ) 2nd-order EP (for both)

Even mixing (for ϕ) Daughter rotating (for $\mathrm{K}^{* 0}$)

STAR Results

Analysis Details of ALICE

ALICE Results

مoo V.s. centrality

Summary

- For ϕ meson, the measured ρ_{00} w.r.t EP is $>1 / 3$ at $\mathrm{p}_{\mathrm{T}} \sim 1.5 \mathrm{GeV} / \mathrm{c}$ in centrality $20-60 \%$ at low energy($<62.4 \mathrm{GeV}$ in STAR), for higher energy (200 GeV in STAR and 2.76 TeV in ALICE), poo is close to $1 / 3$.
- Vorticity and EM fields are possible sources that might contribute to the ϕ spin alignment.
- For $K^{* 0}$, ρ_{00} is $<1 / 3$ for both STAR and ALICE measurement.
- Recombination of polarized (anti)quarks may dominate the $\mathrm{K}^{* 0}$ spin alignment.
- Additional efforts are needed to understand these features.

[^0]: *T. Sjostrand, S. Mrenna and P. Skands, JHEP05 (2006) 026

