
高能重离子碰撞中矢量介 子的自旋排列

周晨升(复旦大学) 2019-12-09

Introduction

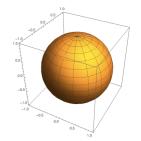
- Initial angular momentum $L \sim 10^3$ ħ in non-central heavy-ion collisions at RHIC.
- Baryon stopping transfers this angular momentum, in part, to the fireball.
- Due to vorticity and spin-orbit coupling, particle's spin may align with L.
- Spin alignment/polarization is a sensitive probe to vortical structure of QGP, fluid property and particle production mechanisms.

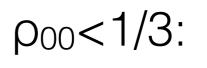
Sergei A. Voloshin, nucl-th/0410089, and many others

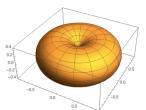
Spin Alignment

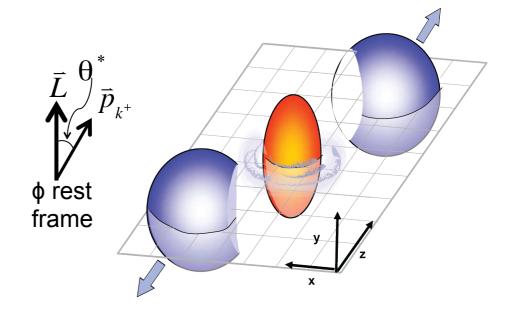
 Spin alignment can be determined from the angular distribution of the decay products*:

 $\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[\left(1 - \rho_{00} \right) + (3\rho_{00} - 1)\cos^2\theta^* \right]$


where N_0 is the normalization and θ^* is the angle between the polarization direction \boldsymbol{L} and the momentum direction of a daughter particle in the rest frame of the parent vector meson.


 A deviation of p₀₀ from 1/3 signals net spin alignment.


*K. Schilling el al., Nucl. Phys. B 15, 397 (1970)


ρ₀₀>1/3:

 $\rho_{00} = 1/3$:

K^{*o} and φ

Characteristic of K^{*0} and φ :

Species	K*0	φ
Quark content	ds	SS
Mass (MeV/c ²)	896	1020
Lifetime (fm/c)	4	45
Spin (J ^P)	1-	1-
Decays	Κπ	KK
Branching ratio	49%	66%

- Originate predominantly from primordial production, thus less affected by feed-down compared to Λ and anti- Λ .
- Spin-1 particles, daughters' polar angle distribution is even function. No local cancellation associated with odd function (the case for spin-1/2 particles e.g. Λ) when integrate over time and phase space
- Additional access to strange and light quark polarization (in particular for φ meson, clean access to strange quark polarization).

•

Hadronization Scenarios and Spin Alignment

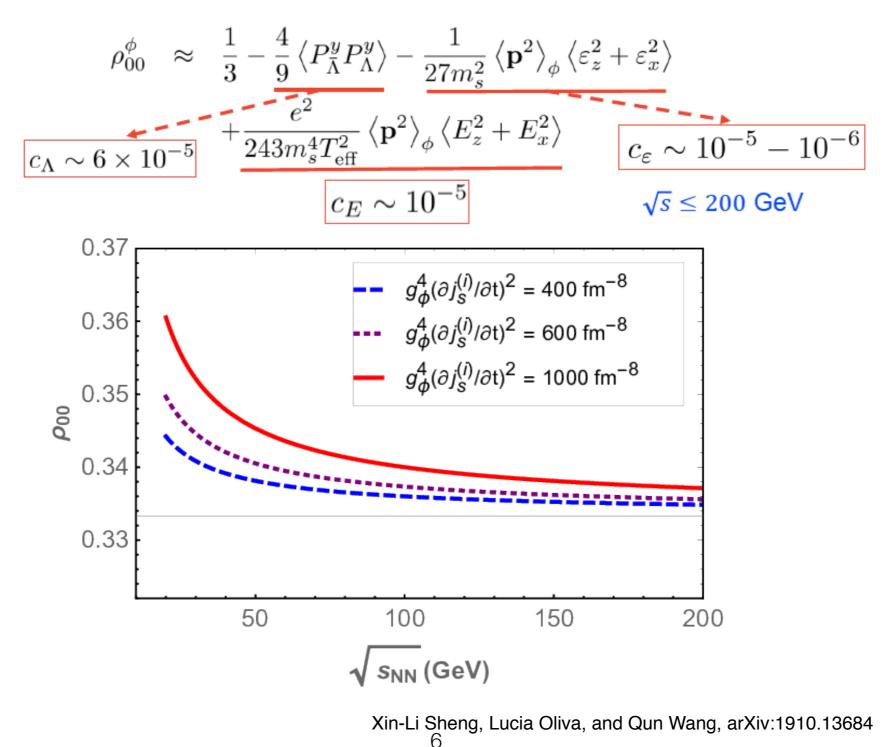
• Recombination of polarized (anti)quarks: $\rho_{00} < 1/3$

$$\rho_{00}^{\phi(rec)} = \frac{1 - P_s^2}{3 + P_s^2}, \quad \rho_{00}^{K^{*0}(rec)} = \frac{1 - P_q P_s}{3 + P_q P_s}$$

• Fragmentation of polarized quarks: $\rho_{00} > 1/3$

$$\rho_{00}^{\phi(frag)} = \frac{1 + \beta P_s^2}{3 - \beta P_s^2}, \quad \rho_{00}^{K^{*0}(frag)} = \frac{f_s}{n_s + f_s} \frac{1 + \beta P_q^2}{3 - \beta P_q^2} + \frac{n_s}{n_s + f_s} \frac{1 + \beta P_s^2}{3 - \beta P_s^2}$$

 $P_q = -\frac{\pi}{4} \frac{\mu p}{E(E+m_q)}$ is the global quark polarization


 $P_{\overline{q}}^{frag} = -\beta P_q$ is the polarization of the (anti-)quark created in the fragmentation process

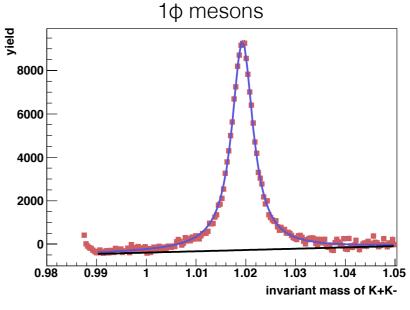
 n_s and f_s are the strange quark abundances relative to up or down quarks in QGP and quark fragmentation, respectively.

Z.T. Liang and X.N. Wang, Phys. Lett. B629, 20 (2005)

Hadronization Scenarios and Spin Alignment

• Quark spin polarization in vorticity and EM fields:

Obtaining yields of vector mesons

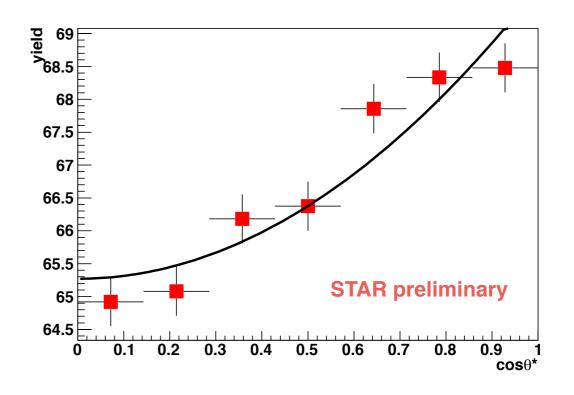

- The background is obtained using event mixing technique or daughter rotating.
- The signal is fitted with Briet-Wigner function and the linear function for residual background to extract raw φ meson yield:

$$BW(m_{inv}) = \frac{1}{2\pi} \frac{A\Gamma}{(m - m_{\phi})^{2} + (\Gamma/2)^{2}}$$

where Γ is the width of the distribution and A is the area of the distribution. A is the raw yield scaled by the bin width (= 0.001 GeV/c²).

Invariant mass distribution before/after background subtraction Au+Au 200 GeV, Centrality: 40%-50%

Fitting of a single p_T & cosθ* bin. Au+Au 200 GeV Centrality: 40%-50% p_T: 1.2~1.8 GeV/c cosθ*:1/7~2/7


ρ_{00} Extraction

 With yield of φ for different bins, we can fit the yield distribution and obtain ρ₀₀ using

 $\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[\left(1 - \rho_{00} \right) + (3\rho_{00} - 1)\cos^2\theta^* \right]$

 θ^* is the angle between the polarization direction L and the momentum direction of a daughter particle in the rest frame of the parent vector meson.

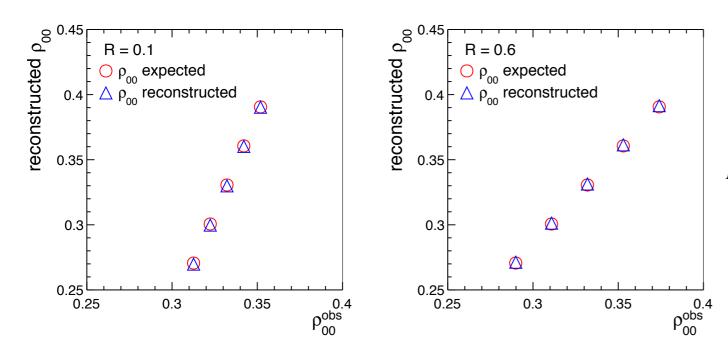
 What we extracted here is the ρ₀₀ before event plane resolution correction (observed ρ₀₀).

Fitting of φ yield vs. cosθ* Au+Au 200 GeV Centrality: 40-50% p_T: 1.2-1.8 GeV/c

 $\rho_{00}^{obs} = 0.3785 + -0.0048$

Event Plane Resolution Correction

• The correction is applied with the formula* for S=1 particles:


$$\rho_{00}^{rec} - \frac{1}{3} = \frac{4}{1+3R} (\rho_{00}^{obs} - \frac{1}{3})$$

where

$$R = \langle \cos 2\Delta \rangle = \langle \cos 2(\psi^{obs} - \psi^{real}) \rangle$$

*A. Tang, B. Tu, C. S. Zhou, arxiv:1803.05777

is the event plane resolution.

Verifying the correction formula : events are generated by Pythia^{*} with Δ following the probability density function^{**}:

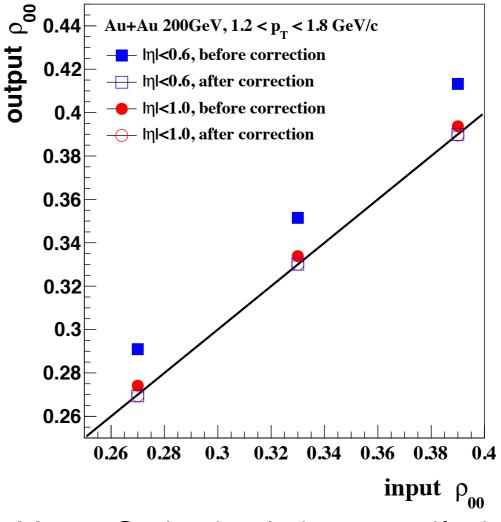
$$P(\Delta) = \frac{1}{2\pi} \left[e^{-\frac{\chi^2}{2}} + \sqrt{\frac{\pi}{2}} \chi \cos(\Delta) e^{-\frac{\chi^2 \sin^2(\Delta)}{2}} \times (1 + \operatorname{erf}(\chi \cos\frac{\Delta}{\sqrt{2}})) \right]$$

 ρ_{00} are at expected values after correction.

*T. Sjostrand, S. Mrenna and P. Skands, JHEP05 (2006) 026

** S. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996)

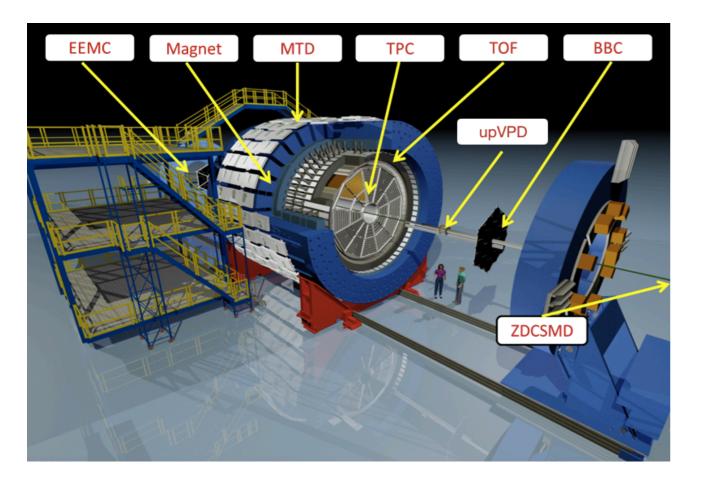
Acceptance Correction


 The acceptance correction can be included by using the corrected angular distribution to extract p₀₀:

$$\left[\frac{dN}{d\cos\theta^*}\right]_{|\eta|<1} \propto (1+\frac{B'F}{2}) + (A'+F)\cos^2\theta^* + (A'F - \frac{B'F}{2})\cos^4\theta^*$$

where:

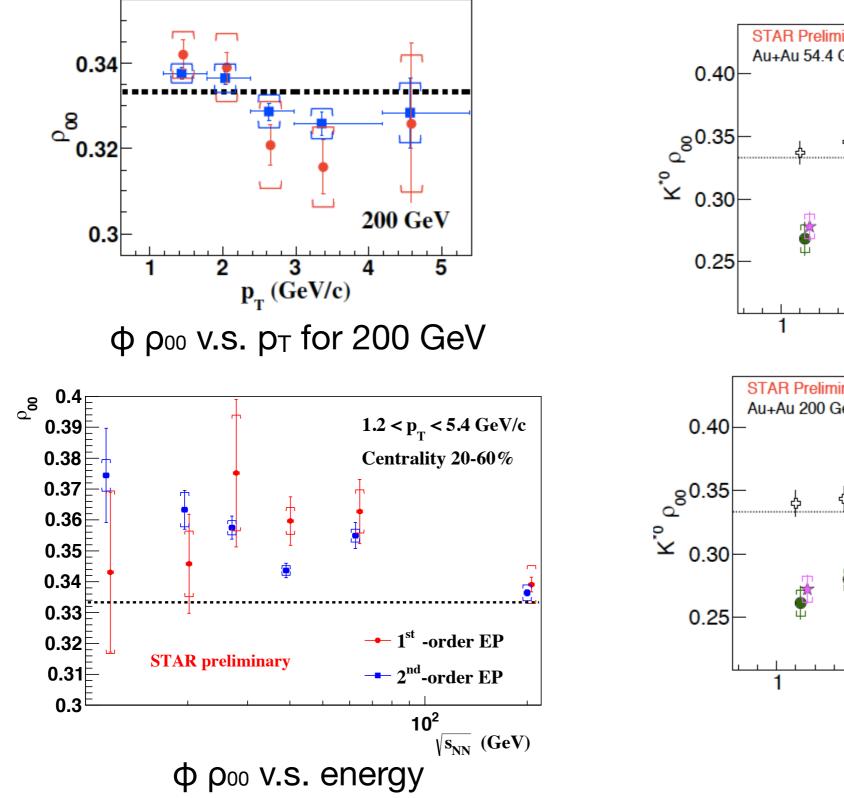
$$A' = \frac{A(1+3R)}{4+A(1-R)}, \quad B' = \frac{A(1-R)}{4+A(1-R)}$$

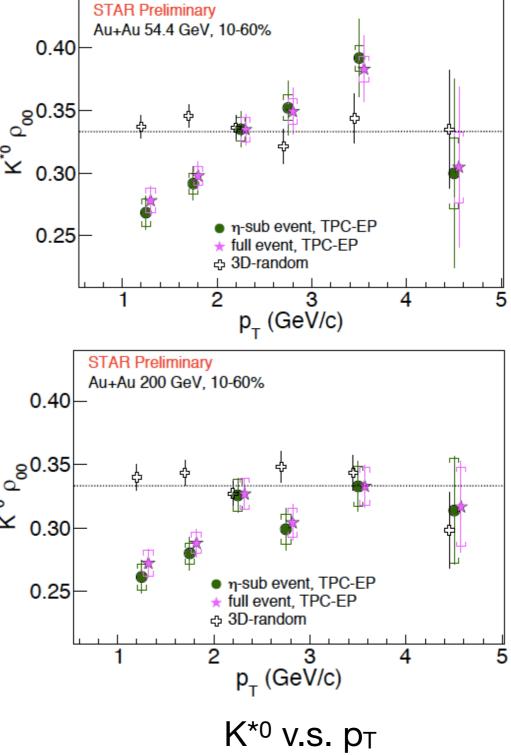

here $A = (3\rho_{00}^{real} - 1)/(1 - \rho_{00}^{real})$, R is the resolution. F describes the effect of acceptance, which can be obtained from simulations.

A Monte Carlo simulation to verify the acceptance correction procedure.

 ρ_{00} are at expected values after correction.

The STAR Detector and Analysis Details

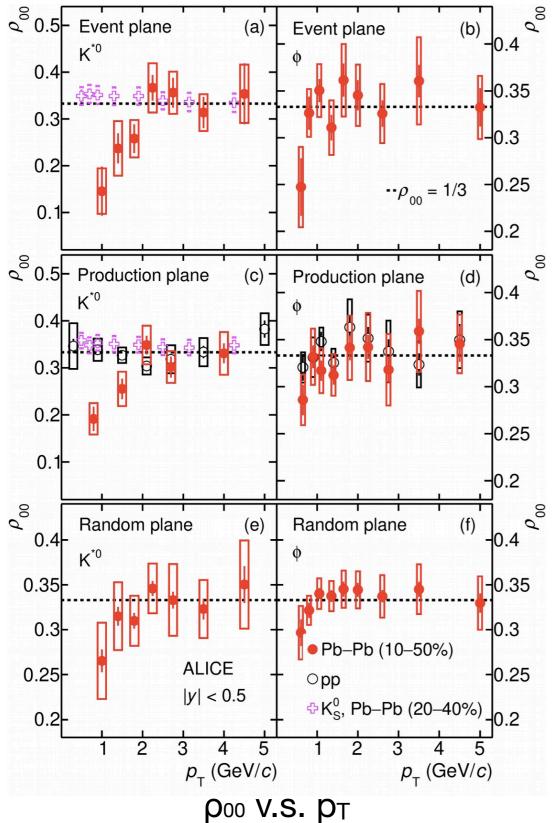


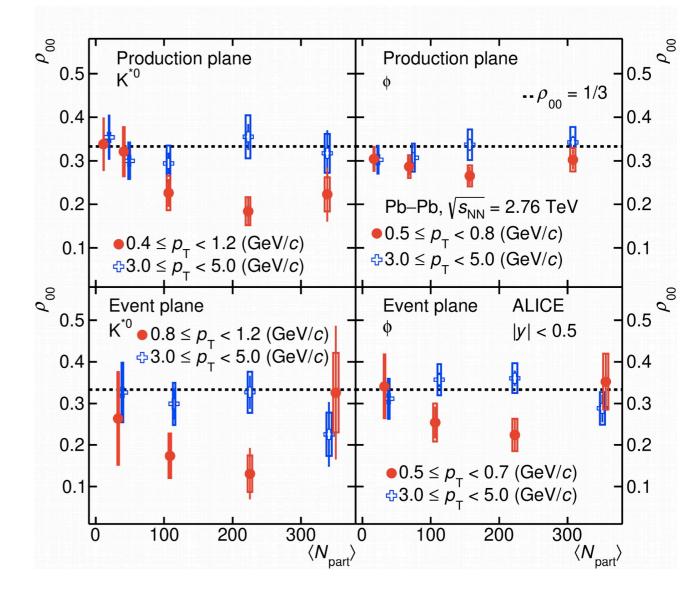

STAR is the only experiment currently operating at RHIC.

- Large acceptance (2π azimuthal angle coverage).
- Excellent particle identification capabilities.
- Event plane reconstruction by ZDCSMD, BBC (1storder EP) or by TPC (2nd-order EP).

System	Au+Au
Energy	11.5, 19.6, 27, 39, 62.4, 200GeV (for φ) 54.4, 200 GeV (for K* ⁰)
Number of good events	8.5, 19.4, 37.9, 117, 45.3, 1560 Μ (for φ) 520, 350 Μ (for K*º)
Rapidity	y < 0.5
Quantization axis	1st-order EP (for ф) 2nd-order EP (for both)
Background	Even mixing (for φ) Daughter rotating (for K* ⁰)

STAR Results





Analysis Details of ALICE

System and energy	pp at 13 TeV and Pb-Pb at 2.76 TeV	
Number of good events	~ 43 M (pp) and 14 M (Pb-Pb)	
Rapidity	y < 0.5	
Background	Even mixing	
Quantization axis	pp: Normal to production plane (PP) Pb-Pb: Normal to production plane (PP), event plane (EP) and random event plane	

ALICE Results

poo v.s. centrality

Summary

- For ϕ meson, the measured ρ_{00} w.r.t EP is > 1/3 at $p_T \sim 1.5$ GeV/c in centrality 20-60% at low energy(< 62.4 GeV in STAR), for higher energy (200 GeV in STAR and 2.76 TeV in ALICE), ρ_{00} is close to 1/3.
- Vorticity and EM fields are possible sources that might contribute to the φ spin alignment.
- For K^{*0} , ρ_{00} is <1/3 for both STAR and ALICE measurement.
- Recombination of polarized (anti)quarks may dominate the K^{*0} spin alignment.
- Additional efforts are needed to understand these features.