Model Calculations of Nuclear Physics Inputs of Astrophysical Relevance and Study of Their Corresponding Effect using Nucleosynthesis Networks

Saumi Dutta saumidutta89@gmail.com Department of Physics and Astronomy Shanghai Jiao Tong University 800, Dongchuan Road, Shanghai - 200240, P. R. China

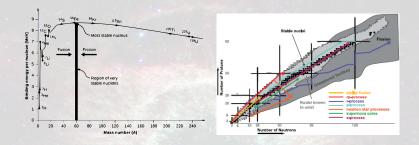
CALCULATIONS OF NUCLEAR PHYSICS INPUTS OF ASTROPHYSICAL RELEVANCE

NUCLEAR ASTROPHYSICS: NEED OF THEORY

- \bullet Nuclear astrophysics \rightarrow interdisciplinary field \rightarrow Nuclear physics \rightarrow integral component
- A detailed understanding of astrophysical phenomena rely on input nuclear data, e.g.,
 - ④ for nuclear reaction studies, → cross sections, astrophysical S-factors, nuclear level densities, strength functions, etc.
 - 2 for nuclear structure studies, \rightarrow nuclear masses, decay lifetimes, resonance properties, etc.
- Most of these nuclear physics information are still difficult to determine experimentally.
- The inputs from theoretical research are highly demanded.
- Sophisticated theoretical models are required to make the predictions.

2 / 16

Agenda


2 Radiative neutron capture: Theoretical framework \rightarrow MICROSCOPIC OMP \rightarrow Results

FUTURE PLAN 3

4 SUMMARY

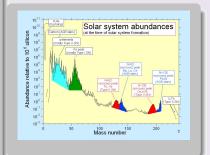
SAUMI DUTTA

- INTRODUCTION

INTRODUCTION

- Heavy element nucleosynthesis beyond iron \rightarrow neutron capture on seeds \rightarrow *s*-process and *r*-process \rightarrow difference in timescales.
- s-process \rightarrow neutron capture timescale $> \beta$ -decay timescale \rightarrow along valley of β -stability.
- r-process \rightarrow neutron capture timescale $< \beta$ -decay timescale \rightarrow along neutron drip line.
- p-process \rightarrow proton-rich side \rightarrow contribution is very small \sim 1% to total solar abundance.

- INTRODUCTION


MOTIVATION

O Abundances → network calculations.

$$\frac{dN_{s}(Z,A)}{dt} = -[(\lambda_{n}(A) + \lambda_{\beta}(A))N_{s}(Z,A)] + [\lambda_{n}(Z,A-1)N_{s}(Z,A-1) + \lambda_{\beta}(Z-1,A)N_{s}(Z-1,A)]$$
(1)

 N_s : s-abundance, $\lambda_n = n_n \sigma v_T$, $\sigma = (n, \gamma)$ cross section, n_n = neutron density, $v_T = \sqrt{\frac{2\kappa_B T}{m}}$, T = stellar temperature; $\lambda_\beta = \beta$ -decay rate

- Neutron capture cross sections/ rates and β-decay rates are crucial inputs.
- Many unstable nuclides, radioactive branch-point isotopes → experimental data absent→ theory is indispensable.
- Old measurements → uncertainties.
- Stellar environment → Maxwellian-averaged cross section (MACS) values are needed over broad energy range.
- Nuclear model predictions are necessary.

 \square Radiative neutron capture: theoretical framework \rightarrow microscopic OMP \rightarrow Results

Ompound nuclear Hauser-Feshbach formula:

$$\left\langle \sigma_{re}(\alpha, \alpha') \right\rangle = \frac{\pi}{k_{\alpha}^2} \sum_{J\pi} \frac{(2J+1)}{(2I_1+1)(2I_2+1)} \frac{\left[\sum_{s'} \hat{T}_I(\alpha) \right] \left[\sum_{s'I'} \hat{T}_{I'}(\alpha') \right]}{\sum_{\alpha''s''I''} \hat{T}_{I''}(\alpha'')} \tag{2}$$

- Transmission coefficients $\hat{T}_{I} \rightarrow$ important inputs
- Neutron optical potential→ constructed a novel microscopic folding model formalism.
- Density-dependent M3Y interaction (DDM3Y):

$$v(r,\rho,E) = 2.07(1 - 1.624\rho^{2/3}) \left[7999 \frac{e^{-4r}}{4r} - 2134 \frac{e^{-2.5r}}{2.5r} - 276(1 - \frac{E}{200A})\delta(r) \right]$$
(3)

 $E \rightarrow$ c.m. energy in MeV, r in fm.

Real DDM3Y interaction folded with target radial matter density.

$$V_{\text{fold}}(\mathbf{r},\rho,E) = \int \mathbf{v}(|\mathbf{r}-\mathbf{r}'|,\rho,E)\rho(\mathbf{r}')d\mathbf{r}'$$
(4)

- Identical real and imaginary part \rightarrow normalized with factors A_r and A_{im}
- Final form.

$$V_{omp} = A_r V_{fold} + A_{im} V_{fold} \tag{5}$$

• A spin-orbit term Spin-orbit term is included in the potential.

 \square Radiative neutron capture: theoretical framework \rightarrow microscopic OMP \rightarrow Results

Other important inputs

- Dominant E1 γ -ray strength function \rightarrow Hartree-Fock-Bogolyubov model Ref. Nucl. Phys. A **739**, 331 (2004).
- Nuclear level densities \rightarrow Goriely's microscopic calculation in combinatorial method, Ref. Phys. Rev. C 78, 064307 (2008).
- Width fluctuation corrections \rightarrow Moldauer's formula (Ref. Phys. Rev. C, 14 0764 (1976), Nucl. Phys. A, 344 185 (1980))
- Densities are obtained from RMF model calculations.
- RMF Lagrangian density → contains nonlinear terms for meson self couplings → FSU Gold parameterization (Phys. Rev. C 93, 024602 (2016)). Lagrangian density FSU Gold parameters
- Point proton density ρ_p is convoluted with Gaussian form factor F(r) to obtain charge density $\rho_{ch}(\mathbf{r})$.

$$\rho_{ch}(\mathbf{r}) = e \int \rho_{\boldsymbol{p}}(\mathbf{r}') F(\mathbf{r} - \mathbf{r}') d\mathbf{r}'$$
(6)

$$F(r) = (a\sqrt{\pi})^{-3} exp(-r^{2}/a^{2})$$
(7)

 $a = \sqrt{\frac{2}{3}}a_p$, $a_p = 0.8$ fm (rms charge radius of proton).

 \square Radiative neutron capture: theoretical framework ightarrow microscopic OMP ightarrow Results

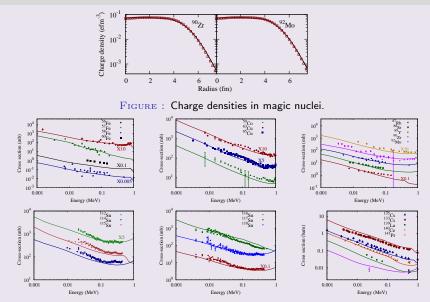


FIGURE : The (n, γ) cross sections from 1 keV to 1 MeV for nuclei in and around shell closures.

 \square Radiative neutron capture: theoretical framework \rightarrow microscopic OMP \rightarrow Results

COMPARISON WITH TWO DIFFERENT OMPS

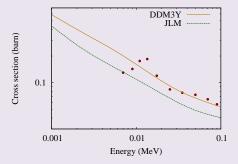
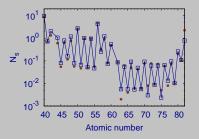



FIGURE : Radiative neutron capture cross-sections for ¹⁴⁴Sm target from our microscopic OMP has been compared with that obtained using JLM potential (JLM OMP) and plotted against experimental data represented by red points.

The network and sensitivity study

The network and sensitivity study

- A network for s-process with nearly 400 nuclides \rightarrow solved numerically.
- Major s-process components \rightarrow weak (56 < A < 100) and main (A > 100)
- Present work \to main component \to in thermally pulsating asymptotic giant branch (TP-AGB) stars (1 $< M/M_{\odot} <$ 3).
- The ${}^{13}C(\alpha, n)$ neutron source reaction \rightarrow temporal temperature and neutron density profiles.
- Statistical neutron capture rates have been included as inputs.

 $\mathbf{F}_{\mathrm{IGURE}}$: Elemental abundance distribution from Zr up to Pb. Abundances are normalized to Sm.

• A sensitivity study is done \rightarrow to identify important neutron capture rates in *s*-process.

THE NETWORK AND SENSITIVITY STUDY

LIST OF PUBLICATIONS I

- Microscopic folding model analysis of the radiative (n, γ) reactions near the Z = 28 shell-closure and the weak s-process, Saumi Dutta, G. Gangopadhyay, and Abhijit Bhattacharyya, Physical Review C 94, 054611 (2016). doi: 10.1103/PhysRevC.94.054611
- 2 Neutron capture reactions relevant to s-process and p-process in the domain of the N = 50 shell closure, <u>Saumi Dutta</u>, G. Gangopadhyay, and Abhijit Bhattacharyya, Physical Review C 94, 024604 (2016). doi: 10.1103/PhysRevC.94.024604
- ③ Neutron capture reactions near the N = 82 shell-closure, Saumi Dutta, Dipti Chakraborty, G. Gangopadhyay, and Abhijit Bhattacharyya, Physical Review C 93, 024602 (2016). doi: 10.1103/PhysRevC.93.024602
- *Radiative proton capture cross sections in the mass range* 40 55, Dipti Chakraborty, <u>Saumi Dutta</u>, G. Gangopadhyay, Abhijit Bhattacharyya, Physical Review C 94, 015802 (2016). doi: 10.1103/PhysRevC.94.015802
- Low-energy proton capture reactions in the mass region 55 60, Saumi Dutta, Dipti Chakraborty, G. Gangopadhyay, and A. Bhattacharyya, Physical Review C 91, 025804 (2015). doi: 10.1103/PhysRevC.91.025804
- **(a)** Microscopic study of (p, γ) reactions in the mass region A = 110 125, Dipti Chakraborty, <u>Saumi Dutta</u>, G. Gangopadhyay, Abhijit Bhattacharyya, Physical Review C **91** 057602 (2015). doi: 10.1103/PhysRevC.91.057602

-FUTURE PLAN

INTRODUCTION: ASTROPHYSICAL SIGNIFICANCE

- One interesting region in the nucleosynthesis path \rightarrow Cd-In-Sn region
- Astrophysical origins of rare isotopes ¹¹³In, ^{114,115}Sn are puzzle

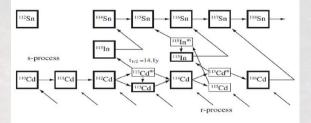


FIGURE : Nucleosynthesis path near the Cd-In-Sn region; figure taken from Hayakawa *et. al.*, The Astrophysical Journal **707**, 859 (2009).

- Presence of many long-lived isomers → interplay of all three nucleosynthesis processes
- Our focus \rightarrow three isomers ^{113m}Cd ($t_{1/2} = 14.1$ years), ^{115m}Cd ($t_{1/2} = 44.56$ days), ^{113m}In ($t_{1/2} = 1.6975$ hours)
- Astrophysical significance → isomeric branchings impart small s-contribution to the nuclei ¹¹³In, ^{114,115}Sn → finally all merge at ¹¹⁶Sn
- Astrophysical plasma → hot photon bath → thermally induced transitions → populated excited states can significantly contribute

SAUMI DUTTA

-FUTURE PLAN

Effective β -decay rates I

 Effective β-decay (EBD) rates (temperature-dependent) are used assuming the states are in thermal equilibrium.

$$\lambda_{\text{eff}}^{\beta}(T) = \sum_{i} n_{i}(T)\lambda_{i}^{\beta}$$
(8)

- Gateway levels \rightarrow excited states above isomer and ground states \rightarrow couple ground states and isomers to thermal equilibrium by (γ, γ') transitions
- Thermalization rate (λ_{th}) can be estimated (Ref. Klay *et. el.* Phys. Rev. C **44**, 2839 (1991)).

$$\lambda_{th} = -\frac{V(1-V)}{\tau_i} \frac{g_i}{g_m} e^{-(E_i - E_m)/kT}$$
⁽⁹⁾

Here, V: γ -branch factor; g_i and g_m : spin factors, E_i and E_m : energies of gateway level and metastable states; τ_i : lifetime of the gateway level

- If IT rates are not fast enough or the ground and isomeric states have very different rates \rightarrow thermal equilibrium is not a valid assumption
- Defining a single EBD rate is ambiguous \rightarrow EBD rate for individual ground and isomeric states \rightarrow each state should be included in nucleosynthesis network

-FUTURE PLAN

Effective β -decay rates II

• Starting from an initial abundance (N_i) of a state \rightarrow allow it to evolve with time.

$$\dot{N}_{i} = \sum_{j} (\lambda_{ji} N_{j} - \lambda_{ij} N_{i}) - \left(\sum_{d} \lambda_{i}^{d}\right) N_{i}$$
(10)

• The time (τ_{eff}) at which the abundance falls 1/e times the initial value, defines the EBD rate

$$\sum N_i(\tau_{eff}) = 1/e \sum_i N_i(t=0) \tag{11}$$

• Our goal \rightarrow to calculate the effective β -decay rates for all astrophysically significant states \rightarrow to implement them in nucleosynthesis code.

-FUTURE PLAN

SUMMARY

- The (n, γ) cross sections and β-decay rates are crucial inputs for heavy element neutron capture processes.
- In my doctoral tenure,
 - The radiative neutron and proton capture cross sections have been studied in statistical Hauser-Feshbach formalism with microscopically folded neutron optical model potential.
 - DDM3Y NN interaction has been chosen and folded with target radial matter densities and densities are extracted from relativistic-mean-field model.
 - A network for s-process with nearly 400 nuclei has been built and solved numerically.
- Future aim is to calculate decay rates of important long-lived isomers of astrophysical importance and implement them in nucleosynthesis network.

THANKS GIVING

