Hot neutron stars with microscopic equations of state

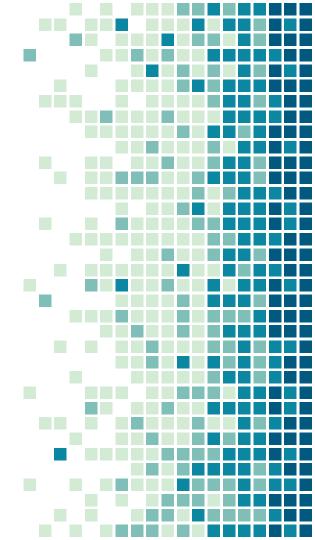
Presenter: 陆家靖 (Jia-Jing Lu) 1,2

Advisors: 李增花 (Zeng-Hua Li) 1

Fiorella Burgio ², Hans-Josef Schulze ²

¹ 复旦大学 Fudan University

² INFN sezione di Catania


Outline

- Introduction
- Theory
 - BHF theory with Frozen Correlation Approx.
 - Beta Equilibrium and TOV Equations
- Results
 - Composition of stellar matter
 - Neutron star structure
 - Temperature dependence of max mass
- Conclusion

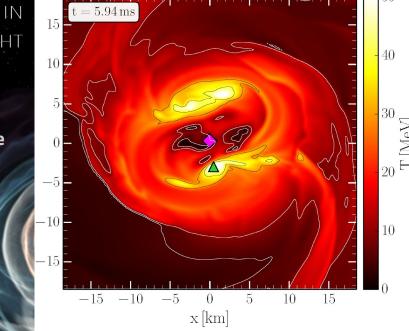
1. Introduction

Gravitational waves and EOSs...

GW170817 FIRST COSMIC EVENT OBSERVED IN GRAVITATIONAL WAVES AND LIGHT

- FT-EOS works as a critical input to BNS simulation;
- Analysis of BNS merger events provides constraints to EOS.
- * Right figure shows the snapshot of temperature profile at time
- = 5.94 ms after merger. [Hanauske+2019]

LDM: LS [Lattimer&Swesty 1991]

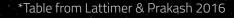

RMF: HShen [HShen+1998,2011]

GShen-NL3 [GShen+2010]

GShen-FSU2.1 [GShen+2010]

SFHo [Steiner+2013]

BHF+Chiral: BL [Bombaci&Logoteta 2018]



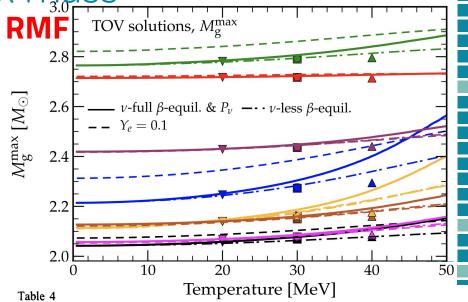
Ranges of baryon number density n, temperature T, net electron fraction $Y_e = n_e/n$, and entropy per baryon S encountered in the indicated astrophysical phenomena.

	Core-collapse supernovae	Proto-neutron stars	Mergers of compact binary stars
n/n_s $T \text{ (MeV)}$ Y_e $S (k_B)$	10 ⁻⁸ -10	10 ⁻⁸ -10	10 ⁻⁸ -10
	0-30	0-50	0-100
	0.35-0.45	0.01-0.3	0.01-0.6
	0.5-10	0-10	0-100

Temp dependence of max mass

[Kaplan+2014]

[Burgio&Schulze 2010] isentropic BHF | RMF

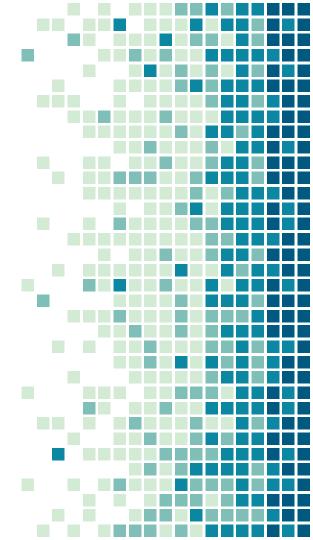

Table 2. Properties of (P)NS minimum and maximum mass configurations.

	Mminimum mass			Maximum mass			
	M/M_{\odot}	R(km)	$ ho_{ m c}/ ho_0$	M/M_{\odot}	<i>R</i> (km)	$ ho_{ m c}/ ho_0$	
LS				2.03	9.86	10.55	
SKa				2.03	9.86	10.42	
Shen				2.03	9.93	10.42	
LS	0.58	40	1.02	1.95	10.2	11.34	
SKa	0.60	38	1.08	1.95	10.2	11.20	
Shen	0.58	44	1.02	1.95	10.3	11.20	
LS	0.70	44	0.90	1.95	10.7	10.85	
SKa	0.77	42	0.90	1.95	10.8	10.70	
Shen	0.75	52	0.77	1.95	10.8	10.80	
	SKa Shen LS SKa Shen LS SKa	LS SKa Shen	$\begin{array}{c cccc} & M/M_{\odot} & R \text{ (km)} \\ LS & & & \\ SKa & & & \\ Shen & & & \\ LS & 0.58 & 40 \\ SKa & 0.60 & 38 \\ Shen & 0.58 & 44 \\ LS & 0.70 & 44 \\ SKa & 0.77 & 42 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Table 1. Characteristics of the maximum mass configurations for different stellar compositions and temperatures.

Composition	T (MeV)	M/M_{\odot}	R (km)	$ ho_{ m c}/ ho_0$
	0	1.86	9.5	8.2
N, l	10	1.82	9.5	8.1
	30	1.73	9.7	7.7

[Nicotra+2006] isothermal



Star properties for matter in beta equilibrium at finite entropy in the BPAL potential model

EOS	S	$\frac{M_{\rm max}}{M_{\odot}}$	<i>R</i> (km)	$\frac{n_{\rm c}}{n_0}$ [P	rakasl	h+1997]
	0	1.933	10.420	7.343	590.2	0.0
BPAL 32	1	1.943	10.589	7.138	577.7	36.7
	2	1.974	11.136	6.506	482.8	71.5
	0	1.955	10.797	7.000	532.0	0.0
BPAL 33	1	1.966	11.020	6.719	507.0	33.3
	2	1.994	11.518	6.198	454.3	66.0

2. Theory

BHF, FCA, BETA-EQ, and TOV...

Brueckner-Hartree-Fock Theory

$$K(
ho,eta;\omega)=v_{NN}+v_{NN}\mathbf{Re}\sum_{k_1,k_2}rac{|k_1k_2
angle Q(1,2)\langle k_1k_2|}{\omega-\epsilon(k_1)-\epsilon(k_2)}K(
ho,eta;\omega)$$
 (1)

Nucleon-Nucleon Interaction

$$V_{NN}=v_2+V_3^{
m eff}$$

We consider here: BOB, V18, N93, and UIX

Single Particle Energy

$$\epsilon(k) = rac{\hbar^2 k^2}{2m} + U(k)$$
 (2)

Fig. Two terms in the BHF level of BBG expansion. [Song+1998]

Single Particle Potential(Non-locality), cont. choice: for all k

$$U(k) = \sum_{k' < k_F} \mathbf{Re} \langle kk' | K(
ho, eta; \omega = e + e') | kk'
angle$$
 (3)

Frozen Correlation Approximation

The finite temperature BHF should be done under Block & De Dominics formalism [Block & Dominicis 1958,1959] and the framework is constructed within BHF theory by our group [Baldo & Ferreira 1999].

Ignore the effects of finite temperature on the single particle potential, we introduce a simplified way called "FCA":

$$f = \sum_i [\sum_k n_i(k) (rac{k^2}{2m_i} + rac{1}{2} U_i(k)) - T s_i]$$
 (1)

where

$$s_i = -\sum_k (n_i(k) {
m ln} n_i(k) + [1-n_i(k)] {
m ln} [1-n_i(k)])$$
 (2)

Beta Equilibrium

$$B_1 o B_2+l+\overline{
u_l}$$

$$B_2+l o B_1+
u_l$$

We impose following requirements with *n*, *p*, *e*, *mu*:

- ullet Charge neutrality $x_p = x_e + e_\mu$
- Chemical equilibrium condition between leptons

$$\mu_e = \mu_\mu$$

Chemical equilibrium condition between leptons and baryons

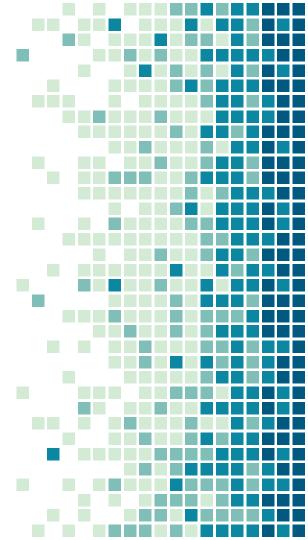
$$\mu_n - \mu_p = \mu_e$$

We assume a cold crust (T=0) and then attach NV EOS in the medium-density range and BPS EOS for outer crust.

Fixed phase transition point at $ho = 0.08 {
m fm}^{-3}$

Tolman-Oppenheimer-Volkoff Equations

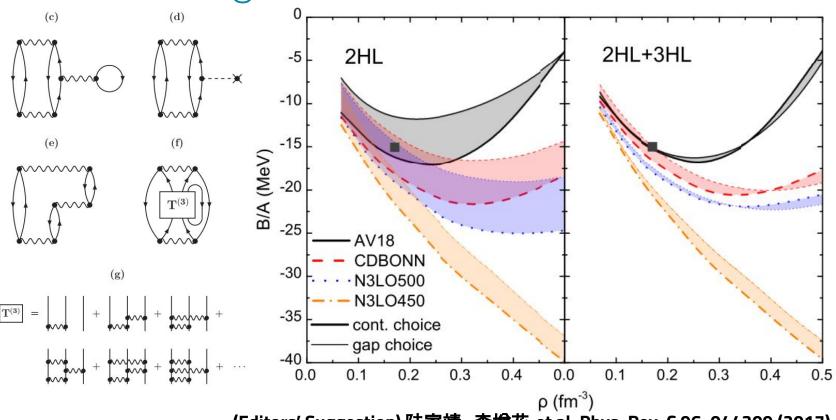
$$rac{\mathrm{d}p(r)}{\mathrm{d}r} = -rac{Gm(r)\epsilon(r)}{r^2}\,rac{[1+rac{p(r)}{\epsilon(r)}][1+rac{4\pi r^3p(r)}{m(r)}]}{1-rac{2Gm(r)}{r}} \ rac{\mathrm{d}m(r)}{\mathrm{d}r} = 4\pi r^2\epsilon(r)$$


$$\frac{dm_B}{dr} = 4\pi r^2 \frac{\rho m_N}{\sqrt{1 - 2Gm/r}}$$

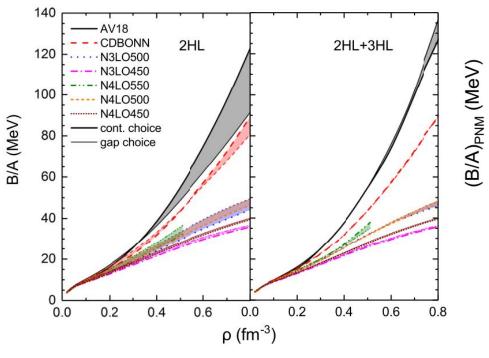
Once the relation of internal energy density and pressure $p(\epsilon)$, i.e. the EOS, is given.

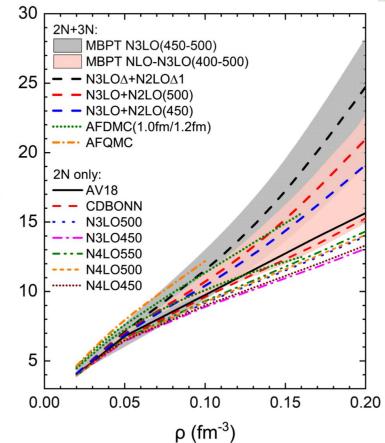
For a chosen central value of energy density, the numerical integration of the above equations provides the mass-radius relation.

3. Results

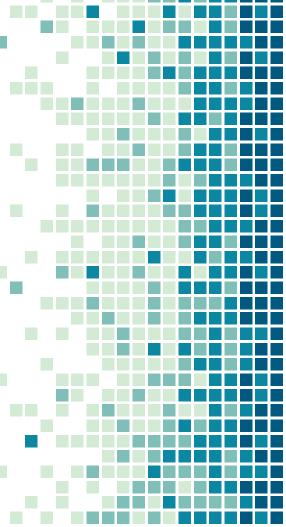

Free Energy, NS Structure, M-R Relation...

3.1


Convergence of Brueckner-Bethe-Goldstone expansion


3HL Convergence - SNM

(Editors' Suggestion) 陆家靖, 李增花 et al. Phys. Rev. C 96, 044309 (2017)


3HL Convergence - PNM

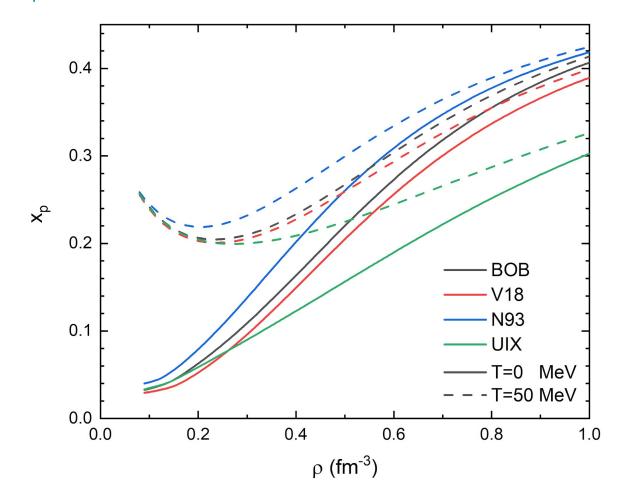
陆家靖, 李增花 et al. Phys. Rev. C 98, 064322 (2018)

Build the finite temperature EOSs

Free Energy of nuclear matter

We use the parametrization introduced in [Burgio & Schulze 2010]

$$rac{F}{A}(
ho,T) = (A_0 + A_2 t^2)
ho + B_0
ho^{B_1} + C t^2 ext{ln}(
ho) + (D_0 t^2 + D_1 t^{D_2})/
ho + E$$


where $t \equiv T/(100 \,\mathrm{MeV})$ and is dimensionless.

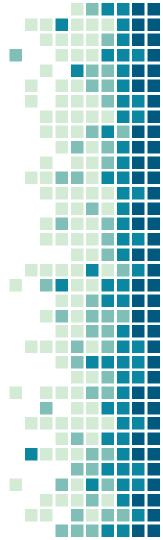
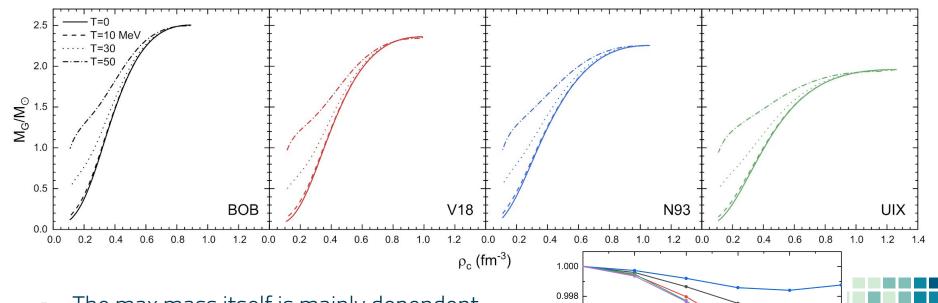
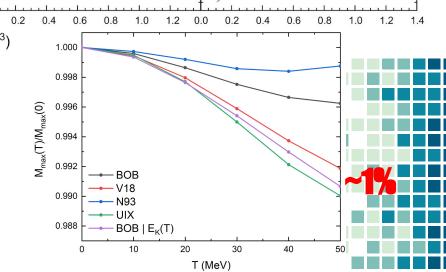

	A ₀	A ₂	B ₀	B ₁	С	D ₀	D ₁	D ₂	Е
BOB SNM	-65	-124	498	2.67	203	-105	122	2.20	-9
BOB PNM	57	-85	856	2.91	152	-32	43	2.47	4
V18 SNM	-60	-147	369	2.66	209	-66	85	2.32	-8
V18 PNM	37	-91	667	2.78	154	-52	62	2.28	6
UIX SNM	-174	-186	323	1.61	199	-136	153	2.16	-4
UIX PNM	24	-117	326	2.09	153	-85	94	2.16	6
N93 SNM	-42	-142	298	2.61	211	-64	87	2.35	-12
N93 PNM	67	-95	743	2.71	154	-35	46	2.44	4

Table 1. Parameterizations of free energy at finite temperature


Free Energy PNM 200 100 — T=0 -T=10 MeV -T=20 -T=30 F/A (MeV) -T=40 -100 SNM **Saturation curves** 200 100 -100 **BOB** V18 N93 UIX 8.0 8.0 0.6 8.0 0.6 ρ (fm⁻³)

Composition of beta-stable matter at different T

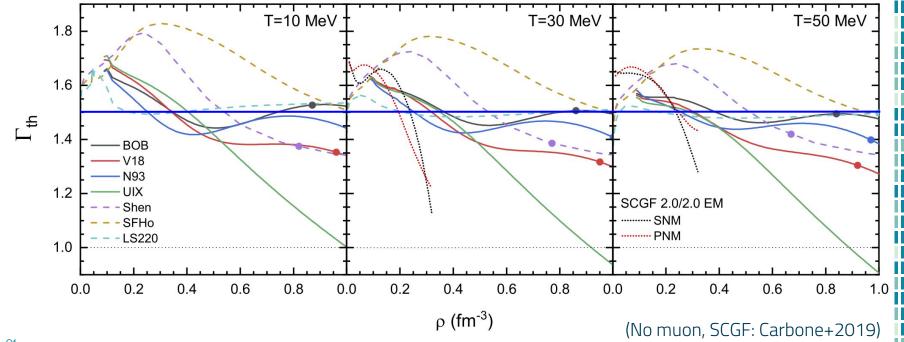



Mass - Radius relation at T=0 MeV

Neutron star structure

- The max mass itself is mainly dependent on different EOSs.
- The decrease of max mass is almost negligible, at most 1%.
- Density is still the dominant feature in neutron star mergers. [arXiv:1907.12760]

Adiabatic index

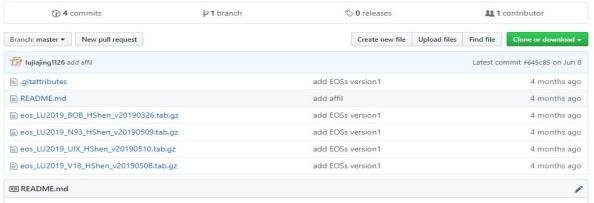

The gamma-law EOS [Endrizzi+2018]:

$$p(
ho,\epsilon) = p_{
m cold}(
ho) + (\Gamma_{
m th}-1)(\epsilon-\epsilon_{
m cold})
ho$$

Definition: $\Gamma_{
m th}=1+p_{
m th}/\epsilon_{
m th}$

Originally chosen as ~ 1.5 [Kanta+1993]

Strong violations were found in the post-merger phase [Bauswein+2010]



Tabulation EOSs in HShen Format

Finite temperature equation of states based on BHF theory

equation-of-state nuclear-physics many-body-theory Manage topics

Crust: HShen EOS 20 11 version

FT-EOS

陆家靖, 李增花 et al. Phys. Rev. C 100, 054335

this repository provides finite temperature equation and the street in t

Will be soon available on compOSE

Contributors

- Jia-Jing Lu^{1,2}
- Zeng-Hua Li¹
- Fiorella Burgio²
- Hans-Josef Schulze²

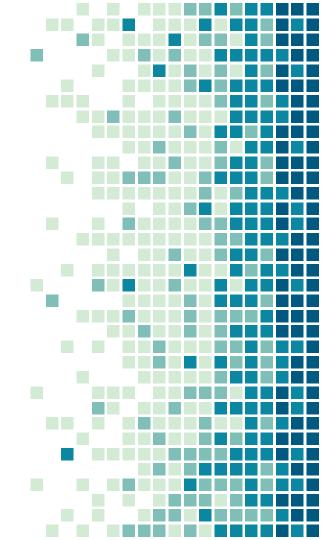
¹Insitute of Modern Physics, Fudan University

²INFN sezione di Catania

<u>Comp</u>Star <u>O</u>nline <u>Supernovæ Equations of State</u>

Conclusion

- Present convenient parameterizations of FT-EOSs within Brueckner theory
- Discuss the density dependence of the adiabatic index
- Temperature dependence of the maximum NS mass
- A set of EOS tabulations is also provided.



Thanks for your attention

Appendix

Numerical methods

Beta Equilibrium

- Chemical Potentials
 - Bayron [Baldo+1998, 2000; Baldo & Ferreira 1999]

$$\mu_{p.n}(
ho_N,eta)=\mu_{p,n}(
ho_N,0)-(eta^2\pm 2eta-eta^2
ho_Nrac{\partial}{\partial
ho_N})E_{ ext{sym}}(
ho_N)$$
 (1)

where $\mu_{p,n}(\rho_N,0)$ is the chemical potential of a nucleon in symmetric matter (+ for p, – for n), and in particular

$$[\mu_n - \mu_p](
ho_N,eta) = 4eta E_{ ext{sym}}(
ho_N)$$

$$\mu_{p,n}(
ho_N,0)=f+p/
ho=f+
horac{\partial f}{\partial
ho}$$

At finite temperature, $E_{
m sym}$ should be replaced by $F_{
m sym}$.

Beta Equilibrium

- Chemical Potentials
 - Leptons [Shapiro & Teukolsky 2008]
 - ${}_{-}$ in the natural units: $\,c=\hbar=k_B=1\,$

$$\mu_{e,\mu} = rac{2}{h^3} \int_0^{p_{ ext{cutoff}}} rac{E_{e,\mu}}{1 + e^{(E(k) - \mu)/T}} \mathrm{d}p^3 = rac{1}{\pi^2} \int_0^{p_{ ext{cutoff}}} p^2 rac{E_{e,\mu}}{1 + e^{(E(k) - \mu)/T}} \mathrm{d}p$$

For electron (ultrarel.):

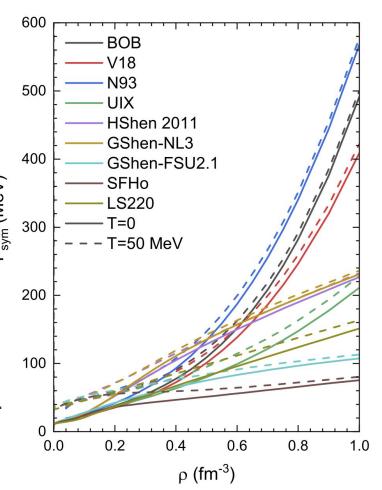
$$E_e(k)=\hbar k=197.33({
m MeV/fm})k$$

For muon (rel.):

$$E_{\mu}(k) = \sqrt{m_{\mu}^2 + (\hbar k)^2} = \sqrt{(m_{\mu}^2) + (197.33 ({
m MeV/fm}) k)^2}$$

Temperature Dependence

Prakash+1997 got increasing max masses with temperature in the RMF framework. Also confirmed by Kaplan+2014.


Possible reasons of decreasing max mass:

- interaction part in RMF? [Nicotra+2006]

$$f=\sum_i [\sum_k n_i(k)rac{k^2}{2m_i}+rac{n_i^{T=0}(k)}{2}U_i(k)-Ts_i]$$
 where $n^{T=0}(k)$ is a step function

where $n_i^{T=0}(k)$ is a step function.

- **Three-Nucleon Force** (TNF)
 - Free symmetry energy -> larger isospin asym.
 - Free energy of SNM

Neutron star structure

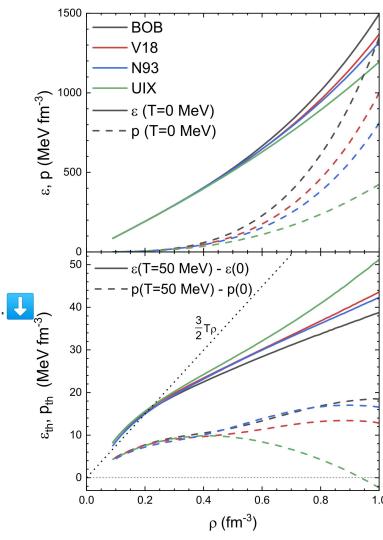
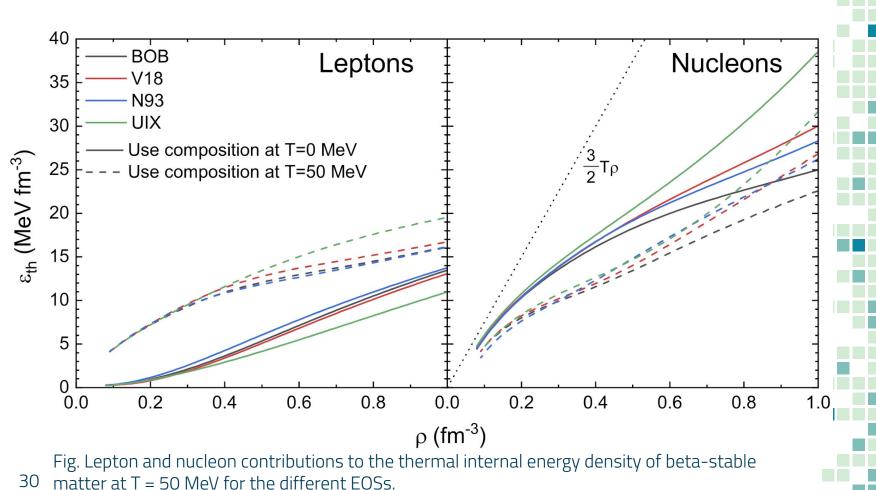
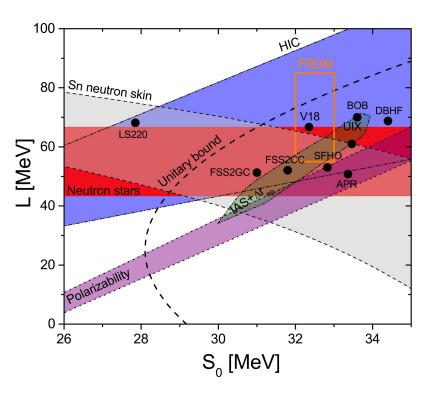
Thermal internal energy $\epsilon_{
m th}=rac{E}{V}=rac{E}{N}rac{N}{V}=rac{3}{2}T
ho$

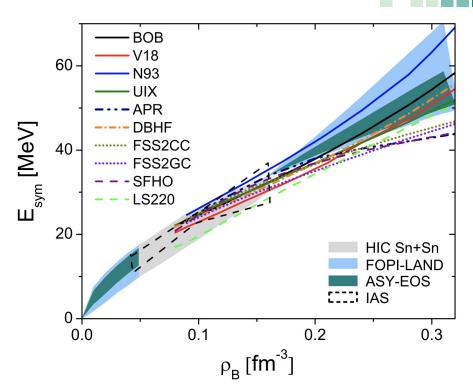
significantly **overestimates** the thermal effects.

ISOSPIN ASYM.

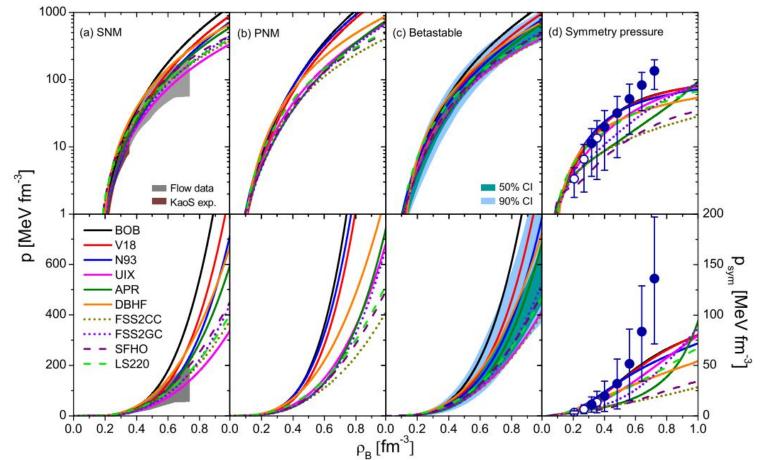
Competitions

- 1. Thermal pressure 🔰
- 2. Baryonic pressure U
- 3. Leptonic pressure 🚺


Fig. Internal energy density and pressure of beta-stable matter at T=0 and the change of these thermal quantities at T=50 MeV.

Neutron star structure


Constraints on the EOS from HIC and GW

Constraints on the EOS from HIC and GW

