

Probing New Physics with Double Beta Decay

Frank Deppisch f.deppisch@ucl.ac.uk

University College London

HEP Seminar | Fudan University | 17/08/2023

Dirac versus Majorana

- Origin of neutrino masses beyond the Standard Model
- Two possibilities to define neutrino mass

Dirac mass analogous to other fermions but with ${m_{\nu}}/{\Lambda_{EW}} \approx 10^{-12}$ couplings to Higgs

- Majorana mass, using only a left-handed neutrino
- → Lepton Number Violation

Beta Decays and ν Nature

Single beta decay

 $(A,Z) \rightarrow (A,Z+1) + e^- + \bar{\nu}_e$

- Tritium decay, KATRIN: $m_etapprox 0.2~{
 m eV}$
- Project 8: Atomic Tritium + Cyclotron Radiation Spectroscopy: $m_{eta} \approx 0.05 \, \mathrm{eV}$
- Allowed double beta $(2\nu\beta\beta)$ decay $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$
- Neutrinoless double beta $(0\nu\beta\beta)$ decay $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$
 - Violation of lepton number
 - Mediated by Majorana neutrinos
- Majoron assisted double beta $(0\nu\beta\beta J)$ decay
 - Missing energy \rightarrow lepton number violated?

Neutrinoless Double ß Decay

Half-life

$$T_{1/2}^{-1} = |\mathbf{m}_{\beta\beta}|^2 \mathbf{G}^{0\nu} |\mathbf{M}^{0\nu}|^2$$

Particle Physics

$$\mathcal{A}_{\mu\nu}^{lep} = \frac{1}{4} \sum_{i=1}^{3} U_{ei}^{2} \gamma_{\mu} (1+\gamma_{5}) \frac{\not(m+m_{\nu_{i}})}{q^{2}-m_{\nu_{i}}^{2}} \gamma_{\nu} (1-\gamma_{5}) \approx \frac{\gamma_{\mu} (1+\gamma_{5}) \gamma_{\nu}}{4q^{2}} \sum_{i=1}^{3} U_{ei}^{2} m_{\nu_{i}} \longrightarrow m_{\beta\beta}$$

- Atomic Physics
 - Leptonic phase space $G^{0\nu} \propto Q^5$
- Nuclear Physics
 - Nuclear transition matrix element $M^{0\nu} \approx 1$ but large uncertainties, factor 2-3

$$\frac{10^{25} \text{ y}}{T_{1/2}} \approx \left(\frac{|m_{\beta\beta}|}{\text{eV}}\right)^2$$

Frank Deppisch | Probing NP with DBD | 17/08/2023

 $|\boldsymbol{q}| \approx \boldsymbol{q}_F$

100 MeV

Three Active Neutrinos

• Effective $0\nu\beta\beta$ Mass

New Physics and $0\nu\beta\beta$

New Physics and $0\nu\beta\beta$

New Physics and $0\nu\beta\beta$

Short-Range Mechanisms

FFD, Graf, Iachello, Kotila, PRD 102 (2020)

- Limits on short-range operators
 - NMEs from IBM-2 with $g_A = 1.0$ and short-range correlations in Argonne parametrization

Diop. modiated

Pion-mediated contributions

- R-parity violating SUSY (Faessler, Kovalenko, Simkovic, Schwieger, Phys.Rev.Lett. 78 (1997) 183)
- Chiral EFT with Pion operators from Lattice QCD (Cirigliano, Dekens, de Vries, Graesser, Mereghetti, JHEP 1812 (2018) 097)

Short-Range Mechanisms

FFD, Graf, Iachello, Kotila, PRD 102 (2020)

- Limits on short-range operators
 - NMEs from IBM-2 with $g_A = 1.0$ and short-range correlations in Argonne parametrization
- Interference with standard massmechanism

Disentangling New Physics

- Comparison of 0νββ in multiple isotopes
 FFD, Päs, Phys.Rev.Lett. 98 (2007) 232501
 - Depends on $0\nu\beta\beta$ mechanism
 - Independent of details of new physics (if one mechanism dominates)

Angular and energy distribution of emitted electrons Doi et al. '83; Ali et al. '06; Arnold et al. '10; FFD, Jackson, Nasteva, Söldner-Rembold '10

$$\frac{d\Gamma}{dE_{e_1}dE_{e_2}d\cos\theta} = \frac{\Gamma}{2} \left(1 - k\left(E_{e_1}, E_{e_2}\right)\cos\theta\right), \quad -1 < k < 1$$

• Linear in $\cos \theta$

 $k(E_{e_1}, E_{e_2})$ depends on $0\nu\beta\beta$ mechanism

Disentangling New Physics

- Comparison of 0νββ in multiple isotopes
 FFD, Päs, Phys.Rev.Lett. 98 (2007) 232501
 - Depends on $0\nu\beta\beta$ mechanism
 - Independent of details of new physics (if one mechanism dominates)

$\frac{T_{1/2}(X)}{T_{1/2}(Y)} = \frac{G(Y)|M(Y)|^2}{G(X)|M(X)|^2}$

Angular and energy distribut
 Doi et al. '83; Ali et al. '06; Arnold et al. '10;

$$\frac{d\Gamma}{dE_{e_1}dE_{e_2}d\cos\theta} = \frac{\Gamma}{2} \left(1 - k\left(E_{e_1}, E_{e_2}\right)\cos\theta\right)$$

• Linear in $\cos \theta$

 $k(E_{e_1}, E_{e_2})$ depends on $0\nu\beta$

Majorons and MLPs

- Emission of one or more neutral bosons
 - Majoron model of neutrino mass generation
 - "Majoron-like" boson J with coupling to v, e.g. $g_{ij} \bar{v}_i \gamma_5 v_j J$
 - Light scalar associated with Weinberg–like operator (Blum, Nir, Shavit, Phys. Lett. B785 (2018) 354)

$$\mathcal{L}_{d=6} = -\frac{\mathcal{Y}_{\alpha\beta}}{\Lambda^2}\phi(HL_{\alpha})(HL_{\beta})$$

 Extensions with derivative couplings or two-Majoron emission

Bamert, Burgess, Mohapatra '95

Majorons and MLPs

- Standard Majoron classes
 - Electron energy distribution

Majorons and MLPs

Standard Majoron classes

Model	n	Mode	Goldstone	L	$T_{1/2}^{0\nu\chi}$	$\mathcal{M}^{0 u\chi}$	$G^{0\nu\chi}$	$\langle g angle$
			boson		$[10^{2'3} yr]$		$[yr^{-1}]$	
IB	1	χ	no	0	> 4.2	(2.30 - 5.82)	$5.86 \cdot 10^{-17}$	$< (3.4 - 8.7) \cdot 10^{-5}$
IC	1	χ	yes	0	> 4.2	(2.30 - 5.82)	$5.86 \cdot 10^{-17}$	$< (3.4 - 8.7) \cdot 10^{-5}$
ID	3	$\chi\chi$	no	0	> 0.8	$10^{-3\pm1}$	$6.32 \cdot 10^{-19}$	$< 2.1^{+4.5}_{-1.4}$
IE	3	$\chi\chi$	yes	0	> 0.8	$10^{-3\pm1}$	$6.32 \cdot 10^{-19}$	$< 2.1^{+4.5}_{-1.4}$
IF	2	χ	bulk field	0	> 1.8	_	_	_
IIB	1	χ	no	-2	> 4.2	(2.30 - 5.82)	$5.86 \cdot 10^{-17}$	$< (3.4 - 8.7) \cdot 10^{-5}$
IIC	3	χ	yes	-2	> 0.8	0.16	$2.07 \cdot 10^{-19}$	$< 4.7 \cdot 10^{-2}$
IID	3	$\chi\chi$	no	-1	> 0.8	$10^{-3\pm1}$	$6.32 \cdot 10^{-19}$	$< 2.1^{+4.5}_{-1.4}$
IIE	7	$\chi\chi$	yes	-1	> 0.3	$10^{-3\pm1}$	$1.21 \cdot 10^{-18}$	$< 2.2^{+4.9}_{-1.4}$
IIF	3	χ	gauge boson	-2	> 0.8	0.16	$2.07 \cdot 10^{-19}$	$< 4.7 \cdot 10^{-2}$

GERDA, Eur. Phys. J. C75 (2015) 9, 416

Cepedello, FFD, González, Hati, Hirsch, Phys.Rev.Lett. 122 (2019) 18, 181801

• Effective RH lepton currents with massless scalar ϕ

$$\mathcal{L}_{0\nu\beta\beta\phi} = \frac{G_F \cos\theta_C}{\sqrt{2}} \left(j_L^{\mu} J_{L\mu} + \frac{\epsilon_{RL}^{\phi}}{m_p} j_R^{\mu} J_{L\mu} \phi + \frac{\epsilon_{RR}^{\phi}}{m_p} j_R^{\mu} J_{R\mu} \phi \right) + \text{h.c.}$$

• Giving rise to long-range contribution to $0\nu\beta\beta\phi$ decay

$$\mathcal{M} = \epsilon_{RX}^{\phi} \frac{(G_F \cos \theta_C)^2}{\sqrt{2}m_p} \sum_N \int d^3x d^3y \int \frac{d^3q}{2\pi^2 \omega} \phi(\mathbf{y}) e^{i\mathbf{q}(\mathbf{x}-\mathbf{y})} \\ \times \left\{ \left[\frac{J_{LX}^{\rho\sigma}(\mathbf{x},\mathbf{y}) u_{\rho\sigma}^L(E_1\mathbf{x},E_2\mathbf{y})}{\omega + \mu_N - \frac{1}{2}(E_1 - E_2 - E_{\phi})} - \frac{J_{XL}^{\rho\sigma}(\mathbf{x},\mathbf{y}) u_{\rho\sigma}^R(E_1\mathbf{x},E_2\mathbf{y})}{\omega + \mu_N - \frac{1}{2}(E_1 - E_2 + E_{\phi})} \right] - \left[E_1 \leftrightarrow E_2 \right] \right\}$$

- No suppression with ν mass
- Calculation follows long-range
 η and λ 0νββ modes
 Doi, Kotani, Takasugi, Prog. Theor. Phys. Suppl. 83 (1985) 1

Cepedello, FFD, González, Hati, Hirsch, Phys.Rev.Lett. 122 (2019) 18, 181801

 \blacktriangleright Effective RH lepton currents with massless scalar ϕ

$$\mathcal{L}_{0\nu\beta\beta\phi} = \frac{G_F \cos\theta_C}{\sqrt{2}} \left(j_L^{\mu} J_{L\mu} + \frac{\epsilon_{RL}^{\phi}}{m_p} j_R^{\mu} J_{L\mu} \phi + \frac{\epsilon_{RR}^{\phi}}{m_p} j_R^{\mu} J_{R\mu} \phi \right) + \text{h.c.}$$

Non-standard total and single electron energy distributions

Cepedello, FFD, González, Hati, Hirsch, Phys.Rev.Lett. 122 (2019) 18, 181801

Cepedello, FFD, González, Hati, Hirsch, Phys.Rev.Lett. 122 (2019) 18, 181801

> Sensitivity (massless ϕ , recasting single Majoron searches)

Isotope	$T_{1/2}$ [y]	$ \epsilon^{\phi}_{RL} $	$ \epsilon^{\phi}_{RR} $
82 Se	3.7×10^{22} [14]	4.1×10^{-4}	4.6×10^{-2}
136 Xe	2.6×10^{24} [13]	1.1×10^{-4}	1.1×10^{-2}
$^{82}\mathrm{Se}$	$1.0 imes 10^{24}$	$8.0 imes 10^{-5}$	8.8×10^{-3}
$^{136}\mathrm{Xe}$	$1.0 imes 10^{25}$	$5.7 imes 10^{-5}$	5.8×10^{-3}

Searched for in EXO-200 (PRD 104 (2021) 11, 112002)

$$T_{1/2}^{Xe} > 4 \times 10^{24} \text{ y}$$

Cepedello, FFD, González, Hati, Hirsch, Phys.Rev.Lett. 122 (2019) 18, 181801

• Sensitivity modification for massive ϕ

University College London

UV Model: LR Symmetry

Cepedello, FFD, González, Hati, Hirsch, Phys.Rev.Lett. 122 (2019) 18, 181801

Extended Gauge Symmetry

 $G_{LR} = SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$

- Minimal LR model: X = B L
- We consider $X \neq B L$ broken but B - L conserved
- Dirac neutrinos (and charged SM fermions) via Dirac seesaw via heavy, vector-like fermions (Bolton, FFD, Hati, arXiv:1902.05802)

-						
Field	$SU(2)_L$	$SU(2)_R$	B-L	ζ	X	$SU(3)_C$
q_L	2	1	1/3	0	1/3	3
q_R	1	2	1/3	0	1/3	3
ℓ_L	2	1	-1	0	-1	1
ℓ_R	1	2	-1	0	-1	1
$U_{L,R}$	1	1	1/3	+1	4/3	3
$D_{L,R}$	1	1	1/3	-1	-2/3	3
$E_{L,R}$	1	1	-1	-1	-2	1
$N_{L,R}$	1	1	-1	+1	0	1
χ_L	2	1	0	+1	1	1
χ_R	1	2	0	+1	1	1
ϕ	1	1	2	-2	0	1

UV Model: LR Symmetry

Cepedello, FFD, González, Hati, Hirsch, Phys.Rev.Lett. 122 (2019) 18, 181801

UV Diagram

• Sensitivity from ϵ_{RL}^{ϕ}

$$\frac{T_{1/2}^{\text{Xe}}}{10^{25} \text{ y}} \approx \left(\frac{1.4 \times 10^{-4}}{g_R^2 \kappa y_N y_\nu}\right)^2 \left(\frac{m_{W_R}}{25 \text{ TeV}}\right)^4 \left(\frac{m_N}{100 \text{ MeV}}\right)^4$$

UV Model: Leptoquarks

Cepedello, FFD, González, Hati, Hirsch, Phys.Rev.Lett. 122 (2019) 18, 181801

- Add heavy scalar leptoquarks $S_1(3,2,1/6)$, $S_2(3^*,1,1/3)$
 - Effective operator at tree level
 - Lepton number conserved if $L(S_1) = L(S_2) = -1, L(\phi) = -2$

• LNV and Majorana neutrino mass at two-loop if $\langle \phi \rangle \neq 0$

New Physics in $2\nu\beta\beta$

Bolton, FFD, Graf, Simkovic, Phys.Rev.D 103 (2021) 055019

- Sterile neutrino search through energy endpoint (also Agostini, Bossio, Ibarra, Marcano, PLB 815 (2021))
 - Emission of one sterile neutrino in double beta decay: $\nu N\beta\beta$
 - Same principle as endpoint searches in single β decays
 - Observed limit at GERDA (JCAP 12 (2022) 012)

 $|V_{eN}|^2 < 1.3 \times 10^{-2}$

New Physics in 2νββ

FFD, Graf, Simkovic, Phys.Rev.Lett. 125 (2020) 17, 171801

- Lepton number conserving RH currents
 - Exotic charged currents probed e.g.
 - in neutron and single β decay
 - at LHC in $pp \rightarrow eX + MET$
 - Limits on RH currents

 $\frac{G_F \cos \theta_C}{\sqrt{2}} \left((1 + \delta_{\rm SM} + \epsilon_{LL}) j_L^{\mu} J_{L\mu} + \epsilon_{RL} j_L^{\mu} J_{R\mu} + \epsilon_{LR} j_R^{\mu} J_{L\mu} + \epsilon_{RR} j_R^{\mu} J_{R\mu} \right) d$

less severe due to lack of interference with SM

- Modification of angular and energy distribution in $2\nu\beta\beta$ decay
 - Observation of two e^- instead of one in single β decay
 - Current limit $\epsilon_{XR} < 3 \times 10^{-2}$ from NEMO3 competitive to other searches

New Physics in $2\nu\beta\beta$

FFD, Graf, Simkovic, Phys.Rev.Lett. 125 (2020) 17, 171801

- Lepton number conserving RH currents
 - Main effect: Opposite angular distribution
 - Small modification of energy distribution

U

New Physics in 2νββ FFD, Graf, Simkovic, Phys.Rev.Lett. 125 (2020) 17, 171801

Lepton number conserving RH currents

New Physics in 2vßß

FFD, Graf, Rodejohann, Xu, Phys.Rev.D 102 (2020) 5, 051701

- Neutrino self-interactions
 - Same signature as SM $2\nu\beta\beta$ decay

$$\boxed{\Gamma_{2\nu} + \Gamma_{\nu \text{SI}} \approx \left(|\mathcal{M}_{2\nu}|^2 + \left| \frac{G_S m_e}{2R} \right|^2 \frac{|\mathcal{M}_{0\nu}|^2}{4\pi^2} \right) \mathcal{G}_{2\nu}}$$

- Interference with SM $2\nu\beta\beta$ decay neglected
- Non-observation of enhanced rate

$$\Gamma_{\nu \mathrm{SI}}/\Gamma_{2\nu}^{\mathrm{ex}} < 1$$

excludes regime $G_S \approx 4 \times 10^9 G_F$ suggested to resolve Hubble tension (Kreisch, Cyr-Racine, Doré, PRD 101 (2020) 12, 123505)

New Physics in 2vßß

FFD, Graf, Rodejohann, Xu, Phys.Rev.D 102 (2020) 5, 051701

- Neutrino self-interactions
 - Same signature as SM $2\nu\beta\beta$ decay

$$\boxed{\Gamma_{2\nu} + \Gamma_{\nu \text{SI}} \approx \left(|\mathcal{M}_{2\nu}|^2 + \left| \frac{G_S m_e}{2R} \right|^2 \frac{|\mathcal{M}_{0\nu}|^2}{4\pi^2} \right) \mathcal{G}_{2\nu}}$$

- Interference with SM $2\nu\beta\beta$ decay neglected
- Modification of energy spectrum for light mediator(s), e.g., s-channel 1.2scalar $m_{\phi} = Q + 0.1m_e$ 1.0

New Physics in $2\nu\beta\beta$

FFD, Graf, Rodejohann, Xu, Phys.Rev.D 102 (2020) 5, 051701

- Neutrino self-interactions
 - Same signature as SM $2\nu\beta\beta$ decay

$$\boxed{\Gamma_{2\nu} + \Gamma_{\nu \text{SI}} \approx \left(|\mathcal{M}_{2\nu}|^2 + \left| \frac{G_S m_e}{2R} \right|^2 \frac{|\mathcal{M}_{0\nu}|^2}{4\pi^2} \right) \mathcal{G}_{2\nu}}$$

- Interference with SM $2\nu\beta\beta$ decay neglected
- Excludes quadruple double β decay

Heeck, Rodejohann EP Lett. 103 (2013) 32001 n

n

 G_S

University College London

Q value

SM Corrections to $0/2\nu\beta\beta$

FFD, Canning, Van Goffier, work in progress

- Radiative Corrections
 - Photon-loop and soft photon emission
 - Calculated for β decay (Repko, Wu, PRC 28 (1983) 2433)
 - Application to $0/2\nu\beta\beta$ decay

FFD, Canning, Van Goffrier, preliminary

2500

2000

1500

1000

2νββ

SM Corrections to $0/2\nu\beta\beta$

FFD, Canning, Van Goffier, work in progress

Radiative Corrections

32 / 33

- Photon-loop and soft photon emission
- Calculated for β decay (Repko, Wu, PRC 28 (1983) 2433)
- Application to $0/2\nu\beta\beta$ decay
- Electromagnetic interaction between emitted electrons
 - Relativistic e^- in Coulomb field of nucleus, atomic e^- and sister e^-

Conclusion

• $0\nu\beta\beta$ is crucial probe for BSM physics

- Universal probe of LNV
- Proof that light ν are Majorana
- $m_{\beta\beta} = O(10 \text{ meV}) \leftrightarrow \text{LNV}$ near GUT scale
- LNV at scales $\Lambda \approx 1 \text{ eV} 100 \text{ TeV}$

• $2\nu\beta\beta$ is sensitive to New Physics

- Conclusion of LNV and Majorana true for $0\nu\beta\beta$ only (no E_{miss})
- Ongoing and future searches probe $2\nu\beta\beta$ decay with high statistics
- How well are systematics understood?
 - Experimental and theoretical spectrum
- Examples considered
 - Majoron emission with RH current
 - Exotic RH currents
 - Sterile neutrino endpoint search
 - Neutrino self-interactions

