Impact of different nuclear matrix element calculations on the interpretation of current and future 0vββ experiments

Jing-Yu Zhu (朱景宇)

Institute of Modern Physics Based on the work with Prof. Thomas Schwetz and Federica Popma, JHEP 06 (2023) 104

NvDEx-CUPID-CHINA合作组2023年会

Big picture

The production mechanism BSM

Experiments:

- Find compromises between nature abundance, Q-value, priced enrichment and detector techniques
- > Key parameter: background, exposure, energy resolution

朱景宇 (IMP)

Brief background

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}_e$ Mayer, 1935; first detected in 1987 by Moe

 $u_i^c =
u_i$ Majorana, 1937

$$(A,Z) \longrightarrow (A,Z+2) + 2e^{-}$$

Furry, 1939

Isotope	Daughter	Q_{etaeta} (keV) ^a	$f_{\rm nat} (\%)^{\rm b}$	$f_{\rm enr} (\%)^{\rm c}$	$T_{1/2}^{2 uetaeta}$ (yr) ^d	$T_{1/2}^{0 u\beta\beta}$ (yr) ^e
⁴⁸ Ca	⁴⁸ Ti	4267.98(32)	30.187(21)	16	$[6.4^{+0.7}_{-0.6}(\text{stat})^{+1.2}_{-0.9}(\text{syst})] \times 10^{19}$	> 5.8 × 10 ²²
⁷⁶ Ge	⁷⁶ Se	2039.061(7)	37.75(12)	92	$(1.926 \pm 94) \times 10^{21}$	$> 1.8 \times 10^{26}$
⁸² Se	⁸² Kr	2997.9(3)	38.82(15)	96.3	$[8.60 \pm 0.03(\text{stat})^{+0.19}_{-0.13}(\text{syst})] \times 10^{19}$	$> 3.5 \times 10^{24}$
⁹⁶ Zr	⁹⁶ Mo	3356.097(86)	32.80(2)	86	$[2.35 \pm 0.14(\text{stat}) \pm 0.16(\text{syst})] imes 10^{19}$	$> 9.2 \times 10^{21}$
¹⁰⁰ Mo	¹⁰⁰ Ru	3034.40(17)	39.744(65)	99.5	$[7.12^{+0.18}_{-0.14}(\text{stat}) \pm 0.10(\text{syst})] \times 10^{18}$	$> 1.5 \times 10^{24}$
¹¹⁶ Cd	¹¹⁶ Sn	2813.50(13)	37.512(54)	82	$2.63^{+0.11}_{-0.12} \times 10^{19}$	$> 2.2 \times 10^{23}$
¹³⁰ Te	¹³⁰ Xe	2527.518(13)	34.08(62)	92	$[7.71^{+0.08}_{-0.06}(\text{stat})^{+0.12}_{0.15}(\text{syst})] \times 10^{20}$	$> 2.2 \times 10^{25}$
¹³⁶ Xe	¹³⁶ Ba	2457.83(37)	38.857(72)	90	$[2.165 \pm 0.016(\text{stat})]$	$> 1.1 \times 10^{26}$
150NT-1	150cm	3371 38(20)	35 638(28)	01	$\pm 0.059(\text{syst}) \times 10^{21}$	$> 2.0 \times 10^{22}$
	Sm	5571.58(20)	33.038(28)	71	$[9.34 \pm 0.22(\text{stat})_{-0.60}^{+0.02}(\text{syst})] \times 10^{10}$	$> 2.0 \times 10^{-2}$
a a dia i		ad Dhua OF (000	10 ¹⁸ yr – 10 ²¹ yr			

Agostini et al. Rev.Mod.Phys. 95 (2023) 2, 025002

朱景宇 (IMP)

Brief background

Agostini et al. Rev.Mod.Phys. 95 (2023) 2, 025002

A general theoretical framework

Cirigliano et al., JHEP 2018

Naive Dimensional Analysis(NDA) problem

D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucl. Phys. **B478**, 629 (1996).

S. R. Beane, P. F. Bedaque, M. J. Savage, and U. van Kolck, Nucl. Phys. **A700**, 377 (2002).

A. Nogga, R.G.E. Timmermans, and U. van Kolck, Phys. Rev. C 72, 054006 (2005).

B. Long and C.-J. Yang, Phys. Rev. C 86, 024001 (2012).

M. Pavón Valderrama and D. R. Phillips, Phys. Rev. Lett. 114, 082502 (2015).

and $F_{\pi} = 92.2$ MeV is the pion decay constant. However, it is known that Weinberg's power counting leads to inconsistent results in nucleon-nucleon scattering [34–37] and nuclear processes mediated by external currents [38], due to a conflict between naive dimensional analysis and nonperturbative renormalization. We therefore investigate the scaling of g_{ν}^{NN} by studying the amplitude $\mathcal{A}(nn \rightarrow ppee) \equiv \mathcal{A}_{\Delta L=2}$ with strong interactions H_{strong} included nonperturbatively.

Cirigliano et al , Phys.Rev.Lett. 120 (2018) 20, 202001

朱景宇 (IMP)

Theoretical mechanism \rightarrow which one dominates?

	amplitude and		
mechanism	particle physics parameter	current limit	test
light neutrino exchange	$rac{G_F^2}{q^2}ig oldsymbol{U_{ei}^2}oldsymbol{m_i}ig $	$0.5 \mathrm{eV}$	oscillations, cosmology, neutrino mass
heavy neutrino exchange	$G_F^2 \left rac{S_{ei}^2}{M_i} ight $	$2\times 10^{-8}~{\rm GeV^{-1}}$	${ m LFV}, { m collider}$
heavy neutrino and RHC	$\left. G_F^2 m_W^4 \left rac{V_{ei}^2}{M_i M_{W_R}^4} \right ight.$	$4\times 10^{-16}~{\rm GeV^{-5}}$	flavor, collider
Higgs triplet and RHC	$\left. G_F^2 m_W^4 \left rac{(M_R)_{ee}}{m_{\Delta_R}^2 M_{W_R}^4} \right ight.$	$10^{-15} { m GeV^{-1}}$	flavor, collider e^- distribution
λ -mechanism with RHC	$G_F^2 \frac{m_W^2}{q} \left \frac{U_{ei} \tilde{S}_{ei}}{M_{W_R}^2} \right $	$1.4 \times 10^{-10} { m GeV^{-2}}$	flavor, collider, e^- distribution
η -mechanism with RHC	$G_F^2rac{1}{q} anoldsymbol{\zeta} \left oldsymbol{U_{ei}} ilde{oldsymbol{S}_{ei}} ight $	$6 imes 10^{-9}$	flavor, collider, e^- distribution
short-range R	$\Lambda_{\text{SUSY}} = f(m_{\tilde{g}}, m_{\tilde{u}_L}, m_{\tilde{d}_R}, m_{\chi_i})$	$7 \times 10^{-18} { m GeV}^{-5}$	collider, flavor
long-range R	$\left rac{G_F}{q} \left \sin 2 heta^b \lambda_{131}^\prime \lambda_{113}^\prime \left(rac{1}{m_{ ilde{b}_1}^2} - rac{1}{m_{ ilde{b}_2}^2} ight) ight $	$2\times 10^{-13}~{\rm GeV^{-2}}$	flavor,
	$\sim rac{G_F}{q} m_b rac{ \lambda'_{131} \lambda'_{113} }{\Lambda^3_{ m SUSY}}$	$1\times 10^{-14}~{\rm GeV^{-3}}$	collider
Majorons	$\propto \langle g_{oldsymbol{\chi}} angle $ or $ \langle g_{oldsymbol{\chi}} angle ^2$	$10^{-4} \dots 1$	${ m spectrum,} { m cosmology}$

Phase factor + nuclear matrix element ?+ new physics parameter ?(effective neutrino mass)

朱景宇 (IMP)

Rodejohann, Int.J.Mod.Phys.E 20 (2011)

Experimental techniques @CJPL

- Bolometers (CUPID, AMoRE, CANDLES IV)
 - Measure $E(\sigma \sim 0.1-0.3\%)$ from phonons; granularity gives position infc
 - Instrumenting with photon detectors for background rejection
- External trackers (SuperNEMO)
 - Trackers + calorimeters, measure $E(\sigma \sim 3-10\%)$ + tracks / positions + P
- Scintillators (KamLAND2-Zen, SNO+, Theia, ZICOS)
 - Measure $E(\sigma \sim 3-10\%)$ + position from scintillation light; some PID
- Semiconductors (LEGEND, SELENA) CDEX
 - Measure *E* ($\sigma \sim 0.05$ -0.3%) from ionization; some tracking / position sensitivity
- TPCs (nEXO, NEXT PandaX AXEL NvDEx DARWIN, LZ)
 - Collect scintillation + ionization: measure $E(\sigma \sim 0.4-3\%)$ + tracks / position + PID

朱景宇 (IMP)

New techniques and more exposure are being pursued to take us beyond the IO. Discovery could come at any time!

Motivations: Schwetz, Popma, Zhu, JHEP 06 (2023) 104

- > Interpreting the constraints/sensitivities on $m_{\beta\beta}$ of current/future $0v\beta\beta$ experiments
- Checking the possibilities of discriminating NME models in future 0vββ experiments

朱景宇 (IMP)

Formula (light neutrino exchange mechanism)

$$(T_{1/2}^{-1})_{\alpha} = \widetilde{\Gamma}_{\alpha}(m_{\beta\beta}, M_{\alpha i}) = \frac{\Gamma_{\alpha}(m_{\beta\beta}, M_{\alpha i})}{\ln 2} = G_{\alpha} |M_{\alpha i}|^2 m_{\beta\beta}^2$$
$$m_{\beta\beta} = \left|\sum_{j} U_{ej}^2 m_j\right|$$

$$M_{\alpha i} = M_{\alpha i}^{\text{long}} + M_{\alpha i}^{\text{short}} = M_{\alpha i}^{\text{long}} (1 + n_{\alpha i}) \qquad n_{\alpha i} = \frac{M_{\alpha i}^{\text{short}}}{M_{\alpha i}^{\text{long}}}$$

$$g_A^{\text{eff}} = q \, g_A^{\text{free}} \qquad g_A^{\text{free}} = 1.27$$

- Quenching effect: correct the NME by q² and the decay rate by q⁴ (Ab initio many-body theory, see Yao's talk later)
- Short-range NME: Contact operator suggested to contribute to light-neutrino exchange, Cirigliano et al. PRL2018
- We do not know neither the value or the sign of short-range NME well.
- > Unknown value of the hadronic coupling g_{ν}^{NN} , to be determined experimentally or Lattice QCD calculations

朱景宇 (IMP)

Long-range NME

Nuclear Model	Index [Ref.]	76 Ge	82 Se	100 Mo	130 Te	136 Xe	
	N1 [25]	2.89	2.73	-	2.76	2.28	
	N2 [25]	3.07	2.90	-	2.96	2.45	
\mathbf{NSM}	N3 [26]	3.37	3.19	-	1.79	1.63	
	N4 [26]	3.57	3.39	-	1.93	1.76	
	N5 [27, 28]	2.66	2.72	2.24	3.16	2.39	
	Q1 [29]	5.09	-	-	1.37	1.55	
	Q2 [30]	5.26	3.73	3.90	4.00	2.91	
QRPA	Q3 [31]	4.85	4.61	5.87	4.67	2.72	
	Q4 [32]	3.12	2.86	-	2.90	1.11	Fang, Faessler, Simkovic, PRC2018
	Q5 $[32]$	3.40	3.13	-	3.22	1.18	Fang, Faessler, Simkovic, PRC2018
	Q6 [<mark>33</mark>]	-	-	-	4.05	3.38	
	E1 [34]	4.60	4.22	5.08	5.13	4.20	
EDF	E2 [35]	5.55	4.67	6.59	6.41	4.77	
	E3 [36]	6.04	5.30	6.48	4.89	4.24	Song, Yao, Ring, Meng, PRC2017
	I1 [37]	5.14	4.19	3.84	3.96	3.25	
IBM	I2 [13]	6.34	5.21	5.08	4.15	3.40	

Agostini et al. Rev.Mod.Phys. 95 (2023) 2, 025002

Short-range NME

Phys. Lett. B 823 (2021) 136720

Agostini et al. Rev.Mod.Phys. 95 (2023) 2, 025002

Current constraints

Sensitivities to $(q^2m_{\beta\beta})^{True}$ at 3σ

Experiment	Isotope	arepsilon [mol·yr]	b [events/(mol·y)]	$\begin{array}{c} \mathrm{PSF} \\ [\mathrm{yr}^{-1} \ \mathrm{eV}^{-2}] \end{array}$
LEGEND-1000	$^{76}\mathrm{Ge}$	8736	$4.9\cdot 10^{-6}$	$2.36\cdot10^{-26}$
SuperNEMO	82 Se	185	$5.4\cdot 10^{-3}$	$10.19 \cdot 10^{-26}$
CUPID	100 Mo	1717	$2.3\cdot 10^{-4}$	$15.91 \cdot 10^{-26}$
SNO+II	$^{130}\mathrm{Te}$	8521	$5.7\cdot 10^{-3}$	$14.2\cdot10^{-26}$
nEXO	136 Xe	13700	$4.0\cdot 10^{-5}$	$14.56 \cdot 10^{-26}$

$$\begin{split} N_{\text{LEGEND-1000}} &= \left\{ 0.97 \times \left[\frac{(q^2 m_{\beta\beta})^{\text{True}}}{40 \text{ meV}} \right]^2 \left(\frac{M_{\text{Ge}}^{\text{long}}}{2.66} \right)^2 + 0.04 \right\} \times \frac{T}{1 \text{ yr}} \\ N_{\text{SuperNEMO}} &= \left\{ 0.09 \times \left[\frac{(q^2 m_{\beta\beta})^{\text{True}}}{40 \text{ meV}} \right]^2 \left(\frac{M_{\text{Se}}^{\text{long}}}{2.72} \right)^2 + 1.0 \right\} \times \frac{T}{1 \text{ yr}} \\ N_{\text{nEXO}} &= \left\{ 1.64 \times \left[\frac{(q^2 m_{\beta\beta})^{\text{True}}}{40 \text{ meV}} \right]^2 \left(\frac{M_{\text{Se}}^{\text{long}}}{1.11} \right)^2 + 0.5 \right\} \times \frac{T}{1 \text{ yr}} \end{split}$$

$$\begin{split} N_{\alpha i} &= S_{\alpha i} + B_{\alpha} \quad B_{\alpha} = b_{\alpha} \cdot \varepsilon_{\alpha} \cdot \left(\frac{T}{1 \text{ yr}}\right) \\ S_{\alpha i}(m_{\beta \beta}, M_{\alpha i}) &= \ln 2 \cdot N_A \cdot \varepsilon_{\alpha} \cdot \left(\frac{T}{1 \text{ yr}}\right) \cdot \widetilde{\Gamma}_{\alpha}(m_{\beta \beta}, M_{\alpha i}) \\ \Delta \chi^2_{ij}(m_{\beta \beta}, M_{\alpha j}; m^{\text{True}}_{\beta \beta}, M^{\text{True}}_{\alpha i}) = 2 \sum_{\alpha} \left(N_{\alpha j} - N^{\text{True}}_{\alpha i} + N^{\text{True}}_{\alpha i} \ln \frac{N^{\text{True}}_{\alpha i}}{N_{\alpha j}}\right) \end{split}$$

朱景宇 (IMP)

The significance of observing one positive signal:

 $m_{\beta\beta}=0, T=10 yr$

$(\Delta \chi_{ij}^2)$ as function of $q^2 m_{\beta\beta}$

 $(q^2 m_{\beta\beta})^{True} = 10 \text{ meV}$

 $(q^2 m_{\beta\beta})^{True}=40 \text{ meV}$

朱景宇 (IMP)

Discrimination without short-range NME

 $(\Delta\chi^2_{ij})_{\min} = \min_{m_{etaeta}} \Delta\chi^2_{ij}(m_{etaeta}, M_{lpha j}\,;\, (q^2m_{etaeta})^{\mathrm{True}}, M^{\mathrm{True}}_{lpha i})$

 $(q^2 m_{\beta\beta})^{True} = 10 \text{ meV}$

 $(q^2 m_{\beta\beta})^{True} = 40 \text{ meV}$

$m_{etaeta}^{\mathrm{True}}$ corresponding to discrimination at 3 σ

(without short- range NME)

Contours of $(\Delta \chi^2_{ij})_{min}$ as function of *T* and $(q^2 m_{\beta\beta})^{True}$

(without short- range NME)

	朱景宇((IMP)
--	------	-------

Discrimination with short-range NME, T=10 yr

朱景宇 (IMP)

$m_{etaeta}^{\mathrm{True}}$ corresponding to discrimination at 3 σ

(with short- range NME)

朱景宇 (IMP)

$m_{\beta\beta}^{\rm True}$ corresponding to discrimination at 3 σ

(with short- range NME)

- > NME uncertainties due to the SRI may lead to the bound on $q^2 m_{\beta\beta}$ varying by a factor of order 10
- Promising discrimination of different NMEs if (q²m_{ββ})^{True} > 40 meV, positive SRI and 10 year exposure
- Similar analysis can be performed in the case of other 0vββ production mechanism (*Phys.Rev.D* 108 (2023) 5, 055023)

Outlook

- > Better understanding the short-range NME in $0v\beta\beta$
- > Better understanding the nuclear structure
- > The quenching problem
- > NME statistical uncertainties
- LEC from lattice calculations
- > From $0\nu\beta\beta$ to $m_{\beta\beta}$: improving the calculations of NME
- > From $0v\beta\beta$ to discriminating NME models: more information on $m_{\beta\beta}$

Which direction do you bet will get through first? (the former one?)

More talks on this soon

Majorana neutrino, to be or not to be This is a question!

Thank you!

Backups

The contours of $(\Delta \chi^2_{ij})_{min}$ as function of the exposure time T and $(q^2 m_{\beta\beta})^{True}$

朱景宇 (IMP)

nEXO and LEGEND-1000 dominate

 $m_{\beta\beta}^{True}$ =40 meV

朱景宇 (IMP)