

HIGH PRECISION TWO NEUTRINO DOUBLE BETA DECAY ELECTRON SPECTRA

DONG-LIANG FANG IMP,CAS

NvDEx - CUPID-China2023年会

1

OUTLINE

- Background
- Experimental status
- Formalisms
- Theoretical results
- Conclusions and outlooks

 Two neutrino double beta decay is a second order weak process

 Two neutrino double beta decay is a second order weak process

- Two neutrino double beta decay has been well studied for decades
- For theory, previously the observable is the nuclear matrix element
- This leaves too many d.o.f's

Barabash **NPA935**,52(2015)

Isotope	$T_{1/2}(2\nu), \mathrm{yr}$	
48Ca	$4.4^{+0.6}_{-0.5} \cdot 10^{19}$	
⁷⁶ Ge	$1.65^{+0.14}_{-0.12} \cdot 10^{21}$	
⁸² Se	$(0.92 \pm 0.07) \cdot 10^{20}$	
⁹⁶ Zr	$(2.3 \pm 0.2) \cdot 10^{19}$	
¹⁰⁰ Mo	$(7.1 \pm 0.4) \cdot 10^{18}$	
100 Mo $-^{100}$ Ru (0_1^+)	$6.7^{+0.5}_{-0.4}\cdot 10^{20}$	
¹¹⁶ Cd	$(2.87 \pm 0.13) \cdot 10^{19}$	
¹²⁸ Te	$(2.0 \pm 0.3) \cdot 10^{24}$	
¹³⁰ Te	$(6.9 \pm 1.3) \cdot 10^{20}$	
¹³⁶ Xe	$(2.19\pm 0.06)\cdot 10^{21}$	
¹⁵⁰ Nd	$(8.2 \pm 0.9) \cdot 10^{18}$	
150 Nd $-^{150}$ Sm (0_1^+)	$1.2^{+0.3}_{-0.2} \cdot 10^{20}$	
²³⁸ U	$(2.0 \pm 0.6) \cdot 10^{21}$	
130 Ba, ECEC(2 ν)	~10 ²¹	

- Two neutrino double beta decay has been well studied for decades
- For theory, previously the observable is the nuclear matrix element
- This leaves too many d.o.f's

Barabash **NPA935**,52(2015)

Isotope	$T_{1/2}(2\nu), \mathrm{yr}$	
		Recommended value
⁴⁸ Ca	$4.4^{+0.6}_{-0.5}\cdot 10^{19}$	0.038 ± 0.003
⁷⁶ Ge	$1.65^{+0.14}_{-0.12}\cdot 10^{21}$	0.113 ± 0.006
⁸² Se	$(0.92\pm 0.07)\cdot 10^{20}$	0.083 ± 0.004
⁹⁶ Zr	$(2.3\pm 0.2)\cdot 10^{19}$	0.080 ± 0.004
¹⁰⁰ Mo	$(7.1 \pm 0.4) \cdot 10^{18}$	
		0.185 ± 0.005
100 Mo $-^{100}$ Ru (0^+_1)	$6.7^{+0.5}_{-0.4}\cdot 10^{20}$	
		0.151 ± 0.005
¹¹⁶ Cd	$(2.87\pm 0.13)\cdot 10^{19}$	
		0.105 ± 0.003
¹²⁸ Te	$(2.0\pm 0.3)\cdot 10^{24}$	0.046 ± 0.006
¹³⁰ Te	$(6.9 \pm 1.3) \cdot 10^{20}$	0.031 ± 0.004
¹³⁶ Xe	$(2.19\pm 0.06)\cdot 10^{21}$	0.0181 ± 0.0007
¹⁵⁰ Nd	$(8.2\pm 0.9)\cdot 10^{18}$	0.058 ± 0.004
150 Nd $-^{150}$ Sm (0_1^+)	$1.2^{+0.3}_{-0.2} \cdot 10^{20}$	0.044 ± 0.005
²³⁸ U	$(2.0\pm 0.6)\cdot 10^{21}$	$0.13^{+0.09}_{-0.07}$
¹³⁰ Ba, ECEC(2ν)	$\sim 10^{21}$	~0.26

- Widely used many-body approaches for two neutrino double beta decay
 - Nuclear shell Model
 - Adjusts quenching factors to reproduce NME
 - QRPA
 - Adjusts particle-particle interaction to reproduce NME
 - IBM etc.
 - Use closure approximation with proper closure energy to reproduce NME

- In this sense, 2vββ spectra
 poses more severe constraints
 on theoretical studies
- And could rule out certain calculations
- Give us implications for certain calculations

Lv et al.**PRC105**,044331(2022)

FORMALISM

Kotila et al. **PRC85**,034316(2012)

• Equal lepton energy approximation (ELEA) :

• The nuclear and lepton parts can now be separated by inserting $\tilde{A} = Q/2 + \langle E_N \rangle - E_I$

 $dW_{2\nu} = (a^{(0)} + a^{(1)}\cos\theta_{12})w_{2\nu}d\omega_1d\epsilon_1d\epsilon_2d(\cos\theta_{12})$

• With
$$a^{(0)} = \frac{1}{4} f_{11}^{(0)} |M_{2\nu}|^2 \tilde{A}^2 [(\langle K_N \rangle + \langle L_N \rangle)^2 + \frac{1}{3} (\langle K_N \rangle - \langle L_N \rangle)^2].$$

• And $M_{2\nu}^{\text{GT}} = \frac{\langle 0_F^+ || \tau^+ \vec{\sigma} || 1_1^+ \rangle \langle 1_1^+ || \tau^+ \vec{\sigma} || 0_I^+ \rangle}{\frac{1}{2} (Q_{\beta\beta} + 2m_e c^2) + E_{1_1^+} - E_I}$

• Finally $[\tau_{1/2}^{2\nu}]^{-1} = G_{2\nu}^{(0)} g_A^4 |m_e c^2 M_{2\nu}|^2$

FORMALISM

Simkovic et al. **PRC97**,034315(2018)

- Two commonly used $\langle E_N \rangle$: $E_{1_1^+}$ (SSD) and E_{GTR} (HSD)
- **Beyond ELEA:** $A^{2\nu} = \left[\frac{1}{4} \left| M_{GT}^{K} + M_{GT}^{L} \right|^{2} + \frac{1}{12} \left| M_{GT}^{K} M_{GT}^{L} \right|^{2} \right]$

• Here
$$M_{GT}^{K,L} = m_e \sum_n M_n \frac{E_n - (E_i + E_f)/2}{[E_n - (E_i + E_f)/2]^2 - \varepsilon_{K,L}^2}$$

• With $\varepsilon_K = (E_{e_2} + E_{\nu_2} - E_{e_1} - E_{\nu_1})/2 \ \varepsilon_L = (E_{e_1} + E_{\nu_2} - E_{e_2} - E_{\nu_1})/2$

• With Taylor expansion, one obtains the final expression

$$\begin{bmatrix} T_{1/2}^{2\nu\beta\beta} \end{bmatrix}^{-1} = (g_A^{\text{eff}})^4 |M_{GT-1}^{2\nu}|^2 \{G_0^{2\nu} + \xi_{31}^{2\nu} G_2^{2\nu} + \frac{1}{3} (\xi_{31}^{2\nu})^2 G_{22}^{2\nu} + [\frac{1}{3} (\xi_{31}^{2\nu})^2 + \xi_{51}^{2\nu}] G_4^{2\nu} \}$$

EXPERIMENT STATUS

NEMO-3 EPJC78,821(2018)

Results from NEMO-3 for ⁸²Se, favors SSD

EXPERIMENTAL STATUS

NEMO-3 EPJC79,440(2019)

- Results from NEMO-3 for ¹⁰⁰Mo
- Indication of strong SSD

EXPERIMENTAL STATUS

KamLand-Zen **PRL122**, 192501(2019)

 KamLand-Zen offers more precise spectra preferring HSD

- We adopt two many-body approaches in our calculations:
 - pnQRPA
 - Well predicted GTR but strength not well fragmented
 - Shell Model:
 - Severely truncated model space leads to missing GTR

- Results for ⁸²Se:
- From QRPA calculations we find that the spectra are sensitive to the low-lying states
- And the strength which cancellation at higher excitation energy will not contribute to the spectra

- If we assume that for NSM the decay strength saturates at 5MeV, we will obtain a quenched gA~0.5
- However, this contradicts the quenched gA values
 ~0.7 from fitting the charge exchange reaction

- Previous conclusion could help us to resolve the puzzle from shell model calculations
- If we assume a strong cancellation at high excitation energy, using the quenched gA from charge exchange reaction, we obtain consistent results

Lv et al.**PRC105**,044331(2022)

- For the fitting procedure in QRPA calculations, by default we assume the NME is "positive"
- But this has not firm physics foundation
- And ββ spectra could offer the answer

• KamLand-Zen results offers the probability

Jokiniemi et al.**PRC107**,044305(2023)

• Constrain $0\nu\beta\beta$ NME with $2\nu\beta\beta$ NME

Right-handed gauge boson and weak current

CONCLUSION AND OUTLOOK

- $2\nu\beta\beta$ spectra as an addition to the half-life measurement can well constrain the nuclear theory
- Current results suggest cancellation on decay strength mediated by high-lying intermediate states for ⁸²Se and ¹³⁶Xe
- These need to be verified with future charge exchange experiments
- All these analyses will shed light on neutrinoless double beta decay studies

