Simulations and Background Estimation For $$N\nu DEx$$

Emilio Ciuffoli

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China

email: emilio@impcas.ac.cn

Huizhou, December 16-17, 2023

Overview

- Background Estimations
 EC (IMP), Surja Ghorui (IMP), Zeyu Huang (LanDa), Hao Qiu (IMP), Qiangmin Wang (LanDa)
 - $\bullet \ \gamma \ {\rm background}$
 - Fast Neutron Background
 - Cosmogenic Activation
 - Radon Background
- REST Framework & Neural Network
 Tao Li (SYSU), Shaobo Wang (SJTU), Siyuan Huang (UCAS & IMP)
 - Detector Geometry
 - Ion Drifting
 - Electronics Response
 - Convolutional Neural Network (CNN)

Signal

• $0\nu 2\beta$ events: 2 β tracks, with 2 Bragg peaks at the end

E 996

Background

- α : track very different from β , no background
- β : Only 1 Bragg peaks, can be rejected using topology (suppression factor in NEXT \sim 0.1)
- $\gamma:$ cannot deposit energy in the detector directly, but they can transfer energy to e^ via three processes
 - Compton Scattering: continuous spectrum
 - Photoelectric effect: $E_{\beta} = E_{\gamma}$
 - Pair production: e^--e^+ pair created, $E_{pair} = E_{\gamma} 2m_e$.

Sources Of Background

- Natural radioactivity \Rightarrow in principle α 's, β 's and γ 's, but the first two are easily shielded, only the latter is relevant
- Fast neutron background
- Cosmogenic activation of the material of the detector \Rightarrow activation rate is negligible underground, but it is a problem on the surface
- Radon background
- Also: pile-up background, cosmogenic muons background (negligible at CJPL, due to the rock overburden), etc...

Detector

20 cm thick lead shielding to stop the γ rays

HDPE placed inside and outside the LS to stop neutrons

γ Bakground

- Only $^{214}{\rm Bi}$ (from $^{238}{\rm U}$ decay chain) and $^{208}{\rm TI}$ ($^{232}{\rm Th}$) will create high energy $\gamma{\rm 's}$
- Dominant contribution from ²¹⁴Bi, ²⁰⁸TI is negligible
- Contamination of detector materials taken from NEXT-TDR

Neutron Induced β 's

If unstable isotopes are created **in the gas**, their decay can provide background. 4 dangerous isotopes

 P_{ROI} : probability for a β to have energy within ROI. ²⁰F \rightarrow main contribution

 ^{19}O and ^{16}N \rightarrow suppressed due to energy threshold, $\textit{E}_n > 3.5, 0.5$ ^{83}Se \rightarrow \textit{P}_{ROI} is very low, 2.4×10^{-5}

8/32

Neutron Induced $\gamma{\rm 's}$

If neutrons are absorbed (anywhere in the detector) γ 's are created via (n,γ) or $(n,n'\gamma)$ reactions (energy up to 10 MeV) \rightarrow dominant contribution

HDPE filler between SSV and Lead + 30 cm-thick external HDPE shield: neutron background down to 0.03 evs/yr.

9/32

Cosmogenic Activation

- Cosmic rays can activate nuclei in the material of the detector on surface
- ⁵⁶Co is the most dangerous isotope, after exposure in Lanzhou, estimated background ~ 3400 events/year.
- 3 yrs cooldown ightarrow 0.18 evts/yr;
 - 2 yrs cooldown \rightarrow 4.8 evts/yr;
 - 1 yrs cooldown \rightarrow 127 evts/yr

			Events/veer
isotope	Q (MeV)	T _{1/2}	
⁵⁴ Mn	1.4	312d	600
⁵⁶ Co	4.6	77d	500
⁵⁷ Co	0.8	272d	300
⁵⁸ Co	2.3	71d	200
⁶⁰ Co	2.8	5.3yr	
			3.0 3.1 3.2 3.3 3.4 (MeV)

Enorgy Don

Radon Background

Radon is a gas part of the 238 U and 232 Th decay chains. It can diffuse and reach directly the fiducial volume: possible issues from β and γ

- β from ²¹⁴Bi can be vetoed using α from ²¹⁴Po (space and time coincidence)
- Maybe γ from ²¹⁴Bi as well? (only time coincidence)
- **Problem**: ions produced in the decay chain will be charged: they could drift (not taken into account so far)

Radon Background

For 1 Bq activity

- ²¹⁴Bi (from ²³⁸U), β: large bg rate, but automatically vetoed via α: 2720 ± 30evts/yr
- ²¹⁴Bi (from ²³⁸U), γ : lower than β , but it can happen far away from α : 8.9 ± 0.2evts/yr
- $\bullet~^{210}TI$ (from $^{238}U):$ suppressed by BR, but not negligible $12.21\pm0.02\mathrm{evts/yr}$
- $^{208}{\rm Tl}$ (from $^{232}{\rm Th}$): some contribution from $\gamma{\rm 's}$ from here, but subdominant: $1.0\pm0.03{\rm evts/yr}$

Rn activity from PANDA-X: ${\sim}18~\text{mBq}$

If only ²¹⁰Tl relevant: 16.4 mBq Rn activity to have 0.2 evts/yr If only ²¹⁴Bi- γ relevant: 22.5 mBq Rn activity to have 0.2 evts/yr If both are relevant: 9.5 mBq Rn activity to have 0.2 evts/yr Material surface in the pressure chamber clean and smooth \Rightarrow lower Rn activity

REST Framework

REST is an event-based analysis framework unifying analysis and simulation.

Emilio Ciuffoli

Simulations N_{\nu}DEx

(日)

E 990

Detector Geometry

Detector Geometry: Preliminary construction of the geometric structure is complete. This includes gas, copper shielding, high-density polyethylene (HDPE) shielding, and lead shielding shielding.

Read out Plane: Adjacent pixels have a spacing of 8mm, with a total of 8192 pixels. The readout is performed on a pixel-by-pixel basis.

600F

900

Ion Diffusion

The simulation of the ion diffusion has been completed. The diffusion is related to the drift length:

$$D_z(SeF_5^-) = rac{\mu_0(SeF_5^-)kT}{e(P/1atm)}$$
 $\sigma_z(SeF_5^-) = \sqrt{rac{2D_z(SeF_5^-)L}{v_d}}$

Red points: σ_z computed using the above formula; blue points with error bar: simulated data Upper panels: tracks without added ion diffusion, lower panels: tracks with added ion diffusion.

▶ ∢ ≣

Simulations For N ν DEx

Emilio Ciuffoli

Simulations N ν DEx

Detector Response

SeF_6 is not included in Garfield, gas parameters are directly set in REST

-24	23	-22-	-21-	-20	-19	-18 Y-a	17-16-15 xis (cm)
•	3	Ð		•	Ð	Þ	æ

Value

10 atm

Emilio Ciuffoli

Simulations N ν DEx

18/32

Readout scheme and Electronic Sampling

Emilio Ciuffoli Simulations NvDEx

19/32

(日)

Signal And Background

- Signal: $0\nu 2\beta$ decay of ⁸²Se
- Background (example): 3 MeV γ from AcrilicPart in PandaX-III geometry (need to add other backgrounds)
- Energy Cut: E>2.5 MeV

XZ/YZ/XY track in R/G/B channel;

Preliminary Results!

CNN Model	DataSet(train+test)	Cut	Signal	Bg Rej.
SimpleCNN	20k+10k	0.995	42.21%	5.4×10^{-3}
SimpleCNN	600k+100k	0.999	88.83%	4.8×10^{-3}
EfficientNetB0	20k+10k	0.995	52.16%	5.1×10^{-3}
EfficientNetB0	600k+100k	0.999	92.46%	6.9×10^{-3}
EfficientNetB4	600k+100k	0.999	91.83%	2.3×10^{-3}

Emilio Ciuffoli Simu

æ

- Using HDPE shield, fast neutron bg is subdominant with respect to γ
- In the short term, the main source of background will be ⁵⁶Co from cosmogenic activation → ICS should be stored underground as soon as possible
- Radon could be an issue, it will depend on the contamination level and other factors, including the drifting, recombination and possibility of vetoing some of the decays.
- Completed the detector geometry in REST framework, working on signal and background simulations
- Topological cuts using CNN should allow us to further reduce the background, with limited loss of signal efficiency

Backup Slides

Emilio Ciuffoli Simi

γ Background: Radioactive Contamination

Values of radioactivity assumed in the simulations for different parts of the geometry (for the materials of the detector, NEXT values were used)

Material	Subsystem	²³⁸ U Activity (mBq/kg)
Concrete	Experimental hall	$6.8 imes 10^{3}$ [1]
Lead	External shielding	0.37 [2]
HDPE	External shielding	0.23 [2]
Steel	Pressure vessel	1.9 [2]
Copper	Inner copper shielding	0.012[2]
РОМ	Field cage	0.23[2]

 H. Ma *et al.*, "In-situ gamma-ray background measurements for next generation CDEX experiment in the China Jinping Underground Laboratory.", Astropart. Phys., 128:102560, 2021.
 V. Alvarez *et al.*,"NEXT-100 Technical Design Report (TDR): Executive Summary" NEXT-TDR, JINST,6237:T06001, 2012.

Isotope	Туре	BR	$T_{1/2}$	Q-Value (MeV)	E_{eta}
²²² Rn	α	1.0	3.8222 d	5.5904	-
²¹⁸ Po	α	0.9998	3.098 min	6.11468	-
²¹⁴ Pb	β	1.0	26.8 min	1.018	1.018
²¹⁴ Bi	β	0.99979	19.9 min	3.269	3.269
²¹⁴ Po	α	1.0	164.3 μ s	7.83346	-
²¹⁰ Pb	β	${\sim}1.0$	22.20 yrs	0.0635	0.0635
²¹⁰ Bi	β	${\sim}1.0$	5.012 d	1.1622	1.1622
²¹⁰ Po	α	1.0	138.376 d	5.03647	-
²⁰⁶ Pb	stable				

æ

▶ ∢ ≣

æ

] Isotope	Туре	BR	$T_{1/2}$	Q-Value (MeV)	E_{eta}
²¹⁸ Po	β	2×10 ⁻⁴	3.098 min	0.259913	?
²¹⁸ At	α	2×10^{-4}	1.5 s	6.874	-
²¹⁸ At	β	2×10 ⁻⁷	1.5 s	2.881314	?
²¹⁸ Rd	α	2×10 ⁻⁷	35 ms	7.26254	-
²¹⁴ Bi	α	2.1×10^{-4}	19.9 min	5.62119	-
²¹⁰ Tl	β	2.1×10^{-4}	4.202 min	5.48213	4.386
²¹⁰ Pb	α	1.9×10^{-6}	22.2 yrs	3.7923	-
²⁰⁶ Hg	β	1.9×10^{-6}	8.32 min	1.308	1.308
²¹⁰ Bi	α	1.32×10^{-6}	5.012 d	5.03647	-

æ

$^{232}\mathrm{Th}$ Decay Chain

Isotope	Туре	BR	T _{1/2}	Q-Value (MeV)	E_{β}
²²⁰ Rn	α	1.0	55.6 s	6.404	-
²¹⁶ Po	α	1.0	0.145 s	6.906	-
²¹² Pb	β	1.0	10.64 h	0.570	0.570
²¹² Bi	β	0.64	60.55 min	2.252	2.252
²¹² Po	α	0.64	299 ns	8.784	-
²¹² Bi	α	0.36	60.55 min	6.208	-
²⁰⁸ Tl	β	0.36	3.053 min	5.0	1.803
²⁰⁸ Pb	stable				

E nac

Dangerous Isotopes

For 1 Bq Rn activity

Isotope	Туре	BR	$T_{1/2}$	E_{β}	evts/yr
$^{208}\mathrm{Tl}{ ightarrow}^{208}\mathrm{Pb}$	β	0.36	3.1 min	1.8	0
$^{208}\text{Tl}\rightarrow^{208}\text{Pb}$	γ	0.36	3.1 min	1.8	1.0
$^{210}\mathrm{Tl}{\rightarrow}^{210}\mathrm{Pb}$	β	2.1×10^{-4}	4.2 min	4.4	12.2
$^{214}\text{Bi}{\rightarrow}^{214}\text{Po}$	β	~ 1	19.9 min	3.3	2720
$^{214}\text{Po}{\rightarrow}^{210}\text{Pb}$	α	1.0	164.3 μ s	7.8	-
$^{214}\text{Bi}{\rightarrow}^{214}\text{Po}$	γ	~1	19.9 min	3.3	8.9

- β from ²¹⁴Bi can be vetoed using α decay of ²¹⁴Po
- Maybe also γ from ²¹⁴Bi can be vetoed as well?
- $\bullet\,$ Main contribution from $^{208}\mathrm{Tl},$ this cannot be vetoed
- Without considering ²¹⁴Bi, Rn activity should be <8.3 mBq to have bg rate 0.1-0.2 evts.yr
- In PANDA-X, Rn activity ${\sim}18$ mBq

Energy Deposited - U chain

Gamma Spectrum

æ

Energy Deposited - Gamma

Energy Deposited

Energy Deposited

