LNGS Hall-C test status

2023 NvDEx & CUPID-China joint meeting, IMP Huizhou

Jiaxuan Cao

On behalf of: Antonio D'Addabbo, Stefano Di Lorenzo, Valentina Dompè,

Massimo Girola, Laura Marini, and many others

2023.12.17

CCVR (CUPID Crystal Validation Run)

Hall-C Cryostat

Run Performance

Setup

- Russian (NIIC) crystals
- Light Detectors

Working detectors:

• LMO-1

• LMO-2

• LMO-3

• LD-3

• LD-4

• LD-5

Working (LD+LMO) couples:

- LMO-1 and LD-5
- LMO-3 and LD-3

Calibration sources:

- External deployable Th-232 strings
- Fe-55 facing LDs
- Note: the cold electronics EF is not working at the level of the FET failed to warm up to its working temepeture.
- Cold electronics S is working but there are no detectors on it.

Data taking

Characterization and study of the response of Light Detectors

- Dedicated calibration measurements with high-intensity Th-232 sources (Cu X-rays) at various working points.
- Study of the pulse shape at multiple WPs (ohmic, optimal, overbias).
- Scan of the ANPS and noise level at multiple WPs (ohmic, optimal, overbias).
- **CCVR** runs
 - study of the contaminants
 - detector (LD + LMO) performance
 - discrimination power

•

Data taking

2023

Background: from 12 Oct 2023 to 14 Nov 2023. Bkg run time around 28 days

Load curves on LMO

	LMO 1	LMO 2	LMO 3
Base resistance [MOhm]	1,132	6,573	1,055

Load curves on LDs

	LD 3	LD 4	LD 5
Base resistance [MOhm]	0,435*	2,887	4,273

*the check with the GND resistance is not ok for this channel so the value of the base resistance is still to confirm

Bad thermalization?

D4

LD5

LMO1

LMO3

LD4

LMO2

LMO3

LMO2

After heating LD 3

After heating one of the detectors all the other in the same

frame warm up and take around 3 hrs to recover After heating LD 5 <

The sensitivity (intrinsic gain) is low!

CCVR Runs

CCVR Runs

Channel	Gain	R load [GOhm]	V bias [V]	R bol [MOhm]	Sampling Frequency	Bessel cutoff	Window Length
LMO-1	10009	4	10.011	1,1	1 kHz	47 Hz	10 s
LMO-2	10009	4	2.787	5,6	1 kHz	47 Hz	10 s
LMO-3	10009	4	7.124	0,95	1 kHz	47 Hz	10 s

Detector Noise Floor

Noise Sources

- Johnson noise
- Amplifier noise: assume to be 3nV/sqrt(Hz)
- Vibrations, wires etc.

Front-End Board

Offset Corrector

Ampli

R_{NTD}

There not seem to be additional components of noise above the noise level

Calibration spectrum

- Filtered with wOF using templates from the first 10 days of background
- Stabilized with pulser
- Calibration peaks: 511 keV (e+/e-), 2615 keV (Tl line), 911.2 keV and 969 keV (Ac-228)

Detector	LMO-1	LMO-2	LMO-3	
2615 TI line FWHM	~ 10 keV	~ 8.2 keV	~ 22 keV	
Baseline Resolution FWHM	~ 10 keV	~ 6.2 keV	~ 20.5 keV	

Full statistics total background energy spectrum

Discrimination power LMO 3/LD 3

Discrimination Power (Energy>2 MeV) ~ 3.3

Light Yield $(\beta/\gamma) \sim 0.33 \text{ keV/MeV}$

Side energy (keV)

-0.5

1000

Discrimination power LMO 1/LD 5

• Discrimination Power (Energy>2 MeV) ~ 2.5

5000

• Light Yield $(\beta/\gamma) \sim 0.3 \text{ keV/MeV}$

Side energy (keV)

-0.5

-1.5

-2.5

0

1000

2000

3000

4000

LD Load Curve scan

Test runs for noise studies on LDs

We want to:

- Scan of the ANPS and noise level at multiple working points (ohmic, optimal, overbias).
- But the bad thermalization will influence our measurements.

LC scan process for single WP

Actual LC scan

Small power input in the first 3 WP, no obvious heating.

Actual LC scan

Problem on LD-3

LD-3 fails the test of the 2 MOhm GND resistance.

Possible problem in the FE gain \rightarrow impossible to normalize the noise correctly \rightarrow we ignore it for the moment

Measurements of the test resistor on the board with the multimeter will help us understand.

Still, it is working and usable for the CCVR runs

СН	R_load	Gain	V_bias	V+	٧-	Vbol	Vbol/gain	R (Mega)	
LD-3-GND	2,70E+10	6623	928	182	343	80,5	0,01215461271	0,7073	This is
LD-3-GND	2,70E+10	6623	28908	2753	-2232	2492,5	0,3763400272	0,7030	I NIS IS
LD-3-GND	2,00E+09	6623	928	845	3185	1170	0,176657104	0,7616	be 2 MOb
LD-3-GND	2,00E+09	6623	3597	6415	-2375	4395	0,6635965575	0,7381	De 2 MOIII
LD-3-GND	2,00E+09	2938	6493	2968	-4056	3512	1,195371001	0,7365	
LD-3-GND	2,00E+09	1046	10011	2874	6731	1928,5	1,843690249	0,7368	PROBLEMS

Average Noise Power Spectrum

Average Noise Power Spectrum

Conclusions

- Light Yield value agrees with previous measurements
- Detectors are not well thermalized resulting in low intrinsic gain
- For LD4 and LD5, they fit the noise floor for most of the time (except for Rload = 27GΩ)
- LD3's noise is always lower than the noise floor (ch13's GND check is not working)
- Noise of the detectors is at the minimum possible level (no additional sources of noise)

Future Plan

- Analysis
 - complete analysis of CCVR run

- Check the readout electronic board
 - Is the Rolad in the correct value?
 - ch13's GND check

- estimate the level of contaminants (working on it)
- Next CCVR run will test Chinese crystals
 - 4 crystals under installation
 32

Thanks

Open the cryostat

Average Noise Power Spectrum

Detectors: 3 LMOs + 3 LDs

Background spectrum

Around 20 days of background without Bad Intervals

contaminants from the U-238 chain

Detector	LMO-1	LMO-2	LMO-3
Cuts efficiency	~ 78 %	~ 74 %	~ 85 %