Study of Delayed Coincidences Events **NvDEx-CUPID-China collaboration group 2023 annual meeting**

Shihong Fu, 17 Dicembre, 2023

Motivation

234

- 3 -

- 4 -

$^{222}Rn \rightarrow ^{218}Po$ Delayed Coincidence

$M1 \rightarrow M1$

$T_{1/2} = 185.8 \text{ s} \approx 3.1 \text{ min}$

diffTime of Rn222 (M1) \rightarrow Po218 (M1) in dataset3601_3615 h0_M1_M1 2299 Entries 233.4 Mean 205.5 Std Dev Integral 2299 89.43 ± 2.37 **A**0 174.2 ± 4.6 half-life Log(BkgIndex) 14.28 ± nan -800 -600 -400 -200 200 400 600 800 $\mathbf{0}$ time difference [s]

Smallest interval containing 74.6% and local mode: (2355.5, 2472.4) (local mode at 2414.0 with rel. height 1; rel. area 1) $N_0/\varepsilon = 2414.0^{+58.4}_{-58.5}$ ($\varepsilon = 0.999923$)

$^{222}Rn \rightarrow ^{218}Po$ Delayed Coincidence

- 11 -

$^{222}Rn \rightarrow ^{218}Po$ Delayed Coincidence

$M2 \rightarrow M1$

 $222Rn \rightarrow 218Po$

Total Energy spectrum of Rn222 (M2) → Po218 (M1) DC in dataset3601_3615

Single Energy spectrum of Rn222 (M2) → Po218 (M1) DC in dataset3601_3615

Analysis of $^{222}Rn \rightarrow ^{218}Po DC$ Other Cases

222 Rn(α) \rightarrow 218 Po(α) Delayed Coincidence

 $M1 \rightarrow M1$

222 Rn(Recoil) $\rightarrow ^{218}$ Po Delayed Coincidence

 $M1 \rightarrow M1$

Energy spectrum of Rn222AlphaRecoil (M1) → Po218 (M1) DC in dataset3601_3615

6120

6110

6100

6130

6140

6150

6160

222Rn(Recoil)

α

1.50

counts /

Analysis of $^{222}Rn \rightarrow ^{218}Po$ DC Wider energy cut

Energy Low_Thresh Setting

Analysis of $^{222}Rn \rightarrow ^{218}Po$ DC Energy cut including α -only peak

Delayed Coincidence Δt background study

cuore-doc-3158

Delayed Coincidence background study Time difference histogram . When $\Delta t > 0$, it means that a daught

When $\Delta t > 0$, it means that a daughter event happened after the corresponding parent event.

- For the ideal case, the Δt should follow an exponential distribution with a compatible $T_{1/2}$.
- Therefore, it is reasonable to use an exponential function to fit the results.

$$N(\Delta t) = N_0 \times \exp(\frac{-\ln(2) \times \Delta t}{T_{1/2}})$$

Delayed Coincidence background study Time difference histogram • When $\Delta t < 0$, it means that a daughter event has

When $\Delta t < 0$, it means that a daughter event happened before the corresponding parent event, which should not happen. So, it does not follow the exponential.

It can be the incorrect linking among a daughter event and another event which is coming from some other sources. And equivalently, it also reflects the extent of defect on the right side.

For this 222 Rn $\rightarrow ^{218}$ Po pair, we have quite few such events happening. Hence, in order to evaluate the background level of both sides, I added a term of constant in my function.

$$N(\Delta t) = \begin{cases} N_0 \times \exp(\frac{-\ln(2) \times \Delta t}{T_{1/2}}) + Bkg & \Delta t > \\ Bkg & \Delta t < \end{cases}$$

Delayed Coincidence background study

Time difference histogram . However, for $^{226}Ra \rightarrow ^{222}Rn$ pair, since the $T_{1/2}$ is ~ 3.8 days, when I search for the Delayed Coincidence events using the same method, I have much higher $\Delta t < 0$ background level.

> And the histogram shape is not constant any more. But it looks like a straight line.

So, I decide to use a liner function for the background fitting.

• The slope is small enough, it is better to use its logarithm $[-\ln(slope)]$ to present its variation.

$$N(\Delta t) = \begin{cases} N_0 \times \exp(\frac{-\ln(2) \times \Delta t}{T_{1/2}}) + const + slope \times \Delta t\\ const + \exp(-\left[-\ln(slope)\right]\right) \times \Delta t \end{cases}$$

Delayed Coincidence background study

- the nominal value.
- limits from $5 \times T_{1/2}$ to $15 \times T_{1/2}$.
- The odd thing happened, the background starts to grow up from somewhere.

counts / 9438

• Although, the description of background shape is very well, the fitted $T_{1/2}$ is still far away from

• I thought the triangular background should finish at some point, then I enlarged my Δt window

Ra226 and Rn222 decay time 330350.0 s of ds3601-3615

$$(T_{fn} - T_{im})) - \cos(2\pi\nu \cdot (T_{fn} - T_{fm})) - \cos(2\pi\nu \cdot (T_{in} - T_{im}))$$

Next work

the non-dependence on the energy range, it is possible to match events that meet the delayed coincidence in a larger scope.

background within the energy range we are interested in.

Challenges

analytic. If we want to identify them event-by-event, we need to develop technologies such as machine learning.

- Based on the established background function of the Δt spectrum and
- Finally, we can achieve a further distinction between events and the

Given that all the conclusions obtained now are statistic rather than

Thanks! NvDEx-CUPID-China collabora

Shihong Fu, 17 Dicembre, 2023

NvDEx-CUPID-China collaboration group 2023 annual meeting

$^{222}Rn \rightarrow ^{218}Po$ Delayed Coincidence

$M2 \rightarrow M2$

 $^{222}Rn \rightarrow ^{218}Po$

Total Energy spectrum of Rn222 (M2) → Po218 (M2) DC in dataset3601_3615

Single Energy spectrum of Rn222 (M2) → Po218 (M2) DC in dataset3601_3615

$T_{1/2} = 185.8 \text{ s} \approx 3.1 \text{ min}$

diffTime of Rn222 (M2) \rightarrow Po218 (M2) in dataset3601_3615 h0_M2_M2 231 Entries 281.7 Mean Std Dev 211.7 Integral 231 6.881 ± 0.818 A0 237.8 ± 24.3 half-life Log(BkgIndex) 8.273 ± nan -800 -400 -200 200 800 -600 0 400 600 time difference [s]

Smallest interval containing 69.7% and local mode:

(236.33, 271.78) (local mode at 254.06 with rel. height 1; rel. area 1) $N_0/\varepsilon = 254.06^{+17.72}_{-17.73}$ ($\varepsilon = 0.999923$)

Analysis of ${}^{226}Ra \rightarrow {}^{222}Rn DC$ Case 1 : M1 \rightarrow M1

226 Ra $\rightarrow ^{222}$ Rn **Delayed Coincidence**

$M1 \rightarrow M1$

Smallest interval containing 70.5% and local mode: (1859.5, 2114.6) (local mode at 1987.1 with rel. height 1; rel. area 1) $N_0/\varepsilon = 1987.1^{+127.5}_{-127.6}$ ($\varepsilon = 0.873567$)

$T_{1/2} = 313770 \text{ s} \approx 3.6 \text{ d}$

Delayed Coincidence pairing efficiency

timestamp [s]

Analysis of ${}^{212}\text{Bi} \rightarrow {}^{208}\text{Tl}$, ${}^{212}\text{Pb} \rightarrow {}^{212}\text{Bi}(\alpha)$ and, ${}^{228}\text{Th} \rightarrow {}^{224}\text{Ra} \text{DC}$ Summary

<u>cuore-doc-3181</u>

$\begin{array}{l} 232 \text{ Th decay chain} \\ \textbf{Delayed Coincidence} \\ \textbf{Decay Sub-Chain:} \\ ^{212}\text{Bi} \rightarrow ^{208}\text{Tl}, \, ^{212}\text{Pb} \rightarrow ^{212}\text{Bi}(\alpha) \\ \textbf{and}, \, ^{228}\text{Th} \rightarrow ^{224}\text{Ra} \end{array}$

²³²Th decay chain Delayed Coincidence

Decay Sub-Chain	Signature	Fitted N_0/ε	Signature	Fitted N_0/ε
$^{212}\text{Bi} \rightarrow ^{208}\text{Tl}$	$M1 \rightarrow M1$	$644.13^{+181.34}_{-85.89}$	$M2 \rightarrow M1$	
	$M1 \rightarrow M2$	$441.87^{+22.93}_{-31.28}$	$M2 \rightarrow M2$	
	$M1 \rightarrow M3$	$396.95^{+21.10}_{-25.79}$	$M2 \rightarrow M3$	$51.07^{+8.83}_{-8.83}$
	$M1 \rightarrow M4$	$241.70_{-14.54}^{+22.85}$	$M2 \rightarrow M4$	$37.84^{+8.00}_{-7.24}$
	$M1 \rightarrow M5$	$119.76^{+16.41}_{-9.85}$	$M2 \rightarrow M5$	$22.07^{+6.78}_{-4.44}$
	$M1 \rightarrow M6$	$57.50^{+8.76}_{-8.76}$	$M2 \rightarrow M6$	
	$M1 \rightarrow M7$	$13.65^{+5.38}_{-3.04}$	$M2 \rightarrow M7$	
$^{212}\text{Pb} \rightarrow ^{212}\text{Bi}(\alpha)$	$M1 \rightarrow M1$	$1879.5^{+178.0}_{-178.0}$	$M2 \rightarrow M1$	$126.00^{+39.48}_{-33.41}$
	$M1 \rightarrow M2$	$161.43^{+60.45}_{-52.02}$	$M2 \rightarrow M2$	$42.55^{+9.70}_{-9.70}$
228 Th $\rightarrow ^{224}$ Ra	$M1 \rightarrow M1$	$4629.8^{+150.2}_{-122.9}$	$M2 \rightarrow M1$	$314.18^{+54.17}_{-39.72}$
	$M1 \rightarrow M2$	$249.18^{+46.95}_{-46.95}$	$M2 \rightarrow M2$	$129.14^{+14.73}_{-13.00}$
	$^{212}\text{Bi} \rightarrow ^{208}\text{Tl}$	2026.54 ^{+186.92} _97.80	$^{212}\text{Pb} \rightarrow ^{212}\text{Bi}(\alpha)$	2209.48 ^{+192.33} -188.68
	228 Th $\rightarrow ^{224}$ Ra	5322.30 ^{+167.08} _138.04		

232Th decay chain **Delayed Coincidence Decay Sub-Chain:** $^{212}\text{Bi} \rightarrow ^{208}\text{Tl}, ^{212}\text{Pb} \rightarrow ^{212}\text{Bi}(\alpha)$ and, $^{228}Th \rightarrow ^{224}Ra$

Thanks! NvDEx-CUPID-China collabora

Shihong Fu, 17 Dicembre, 2023

NvDEx-CUPID-China collaboration group 2023 annual meeting