中国科学院高能物理研究所

AlMn合金超导薄膜低Tc调控研究及TES探测器研制进展

汇报人:刘舟慧
单位:中国科学院高能物理研究所
合作组: TES R&D CUPID-China合作组
日期: 2023年12月17日

NvDEx与CUPID-China 合作组2023年会 广东 惠州

- 1 研究背景
- 2 用于0vββ衰变实验的TES探测器
- 3 AlMn超导薄膜的制备及表征
- 4 TES探测器的研制进展
- 5 总结与展望

中國科學院高能物理研究所

无中微子双贝塔衰变 (0vββ) 的研究可以揭示:

(1) 轻子数是否守恒;

- (2) 中微子是否为马约拉纳粒子;
- (3) 中微子的绝对质量标度;

(4) 其他超出粒子物理标准模型的新物理。

0vββ实验要在连续的本底下寻找罕见峰,需要:

- 高能量分辨率
- 低本底(辐射环境、材料本身等)

Nuclear Physics B, 2003, 118(1):287-296.

研究背景—几种探测器对比

中國科學院為能物理研究所

各个实验组的设计方案目标均是为了提高装置的探测灵敏度

典型实验	CUORE	GERDA	KamLAND-Zen	PandaX-III
探测器类型	低温晶体量热器	高纯锗探测器	大型液闪探测 器	微结构气体探测器 Micromegas
质量及元素	~200 kg ¹³⁰ Te	35.6 kg ⁷⁶ Ge	400 kg ¹³⁶ Xe	150 kg ¹³⁶ Xe
背景指数 counts/(keV kg yr)	10-2	10-4		10-4
半衰期下限(90% C.L.)	$1.5 imes 10^{25}$	$1.8 imes 10^{26}$	1.07×10^{26}	$2.3 imes 10^{26}$
能量分辨率(keV)	7.5	3	243	75

增加待测晶体质量、抑制本底、提高能量分辨率

研究背景—低温晶体量热器

中国科学院高能物理研究所

低温下,晶体材料比热容 C(T) ~ T³,降低工作温度可以有效减小比热容C,C越小 信号幅度越大,从而提高温度测量灵敏度,通常晶体量热器工作温度在10 mK附近

Cryogenics, 2019

研究背景—低温晶体量热器

CUPID 是在CUORE 基础上发展的新型晶体量热器实验技术,采用**光热双通道读出技** 术实现本底甄别,有效压低α背景本底,提高实验灵敏度。主要采用NTD探测器。

	CHOPE				
	COOKE	Parameter	CUPID baseline	CUPID-reach	CUPID-1T
		Crystal	Li2100MoO4	Li2100MoO4	Li2100MoO4
		Detector mass (kg)	450	450	1871
		¹⁰⁰ Mo mass (kg)	240	240	1000
		Energy resolution FWHM (keV)	5	5	5
	14	Background index (counts/(keV·kg·yr))	10^{-4}	2×10^{-5}	5×10^{-6}
	CUPID T	Containment efficiency	78%	78%	78%
热	11	Selection efficiency	90%	90%	90%
		Livetime (years)	10	10	10
		Half-life exclusion sensitivity (90% C.L.)	$1.4 imes10^{27}~{ m y}$	$2.2 imes 10^{27}~{ m y}$	$9.1 imes 10^{27} ext{ y}$
	•	Half-life discovery sensitivity (3σ)	1×10^{27} y	$2 imes 10^{27}$ y	$8 imes 10^{27}$ y
		$m_{\beta\beta}$ exclusion sensitivity (90% C.L.)	10-17 meV	8.4-14 meV	4.1-6.8 meV
		$m_{\beta\beta}$ discovery sensitivity (3 σ)	12-20 meV	9-15 meV	4.4-7.3 meV

CUPID Group, 2021

[2022 arXiv]2203.08386 Toward CUPID-1T

TES探测器

参数	TES探测器	NTD探测器
探测原理	超导金属膜处在超导转变温区,利用其 电阻的相变特性	电阻随温度升高而减小
探测介质	超导金属膜	Ge-NTD
温度灵敏系数	几十~几千	≤10
能量分辨率	1.6eV@5.9keV (FWHM)	~3eV@5.9keV (FWHM)
响应时间	~µs量级	~ms量级
读出电子学	SQUID、复杂	JFET、简单
复用方式	可多路复用,64:1以上	无
在0νββ实验中运用	计划在CUPID-1T中使用	CUORE

与北师大合作项目--2021年自然科学基金科学部综合研究专项项目: 《用于0vββ实验的极低超导转变温度TES光热探测系统关键问题研究》

超导转变边沿传感器(TES)

中國科學院高能物理研究所

TES是一种低温超导探测器,主体为偏置在超导至正常态转变区内的一层超导薄膜,利用其陡峭R-T关系测量热量

中國科學院為能物理研究所

- ➢ TES探测器的核心是超导薄膜的制备,AlMn合金薄膜是TES常用的超导薄膜
- ▶ 采用磁控溅射制备AlMn薄膜, 在稀释制冷机中使用四端法测试薄膜R-T

Zhouhui Liu, Yifei Zhang*, et al. 2023, (In preparation)

中国科学院高能物理研究所

▶ AlMn薄膜靶材<u>Mn含量</u>对薄膜性能的影响

J. Low. Temp. Phys. 2016, 184:66-73

中國科學院為能物理研究所

▶ 研究AlMn薄膜<u>溅射功率、氩气压强、薄膜厚度、烘烤温度</u>对薄膜性能的影响

Zhouhui Liu, Yifei Zhang*, et al. 2023, (In preparation)

AlMn薄膜Tc由最高烘烤温度决定

AlMn超导薄膜的制备及表征

▶ 研究烘烤、磁场对薄膜性能的影响:

通过控制外加磁场可实现Tc从14~430 mK的调控(应用在0vββ TES)

Tc<30mK的薄膜升降温测试会受到垂直方向磁场影响

Zhouhui Liu, Yifei Zhang*, et al. 2023, (In preparation)

▶ 研究磁化对薄膜性能的影响、超导临界电流Ic与Tc的关系

磁化对AlMn薄膜Tc和ΔT的无显著影响

超导临界温度Tc与临 界电流Ic符合GL理论

Zhouhui Liu, Yifei Zhang*, et al. 2023, (In preparation)

TES探测器的研制进展

中國科学院為能物跟研究所 Institute of High Energy Physics, Chinese Academy of Scien

- ▶基于COMSOL多物理仿真软件对TES光热探测器进行建模和初步仿真
 - 模拟光热功率引起稳态温度分布: 模型可进一步简化

TES探测器的研制进展

中国科学院高能物理研究所 Institute of High Energy Physics, Chinese Academy of Scienr

- ▶ 基于COMSOL多物理仿真软件对TES光热探测器进行建模和初步仿真
 - 模拟光热功率引起稳态和瞬态温度分布,下一步进行热电仿真

TES探测器的研制进展

中國科學院為能物現研究所 Institute of High Energy Physics, Chinese Academy of Scienc

▶ 基于AlMn薄膜的研究,进一步完成了TES探测器的设计和版图制作

Phonon detector 0.05 0.02 -0.02 -0.05 0.04 0.02

Light detector

Parameter	Value	
Absorber	Li ₂ MoO ₄ crystal, density=3.06 g/cm^3	
Size	45 mm \times 45 mm \times 45 mm, weight=278.8 g	
TES	AlMn TES, Rn~0.1Ω	
Tc	15-20 mK	
Qββ	≤5 keV @ 3.034 MeV	
Pulse	Rise time ~10ms, decay time 0.1s-1s	
Parameter	Value	
Absorber	Silicon	
Size	$45~\mathrm{mm} imes 45~\mathrm{mm} imes 500~\mathrm{um}$	
TES	AlMn TES, Rn~ 0.1Ω	
Тс	15-20 mK	
Low threshold	≤100 eV	
Pulse	Rise time ~1ms, decay time ~10ms	

TES探测器的研制进展--声子探测器

9 种探测器: 热导率的调控、电阻率、声子收集效率等

Silicon: $5mm \times 5mm \times 0.3mm$

Τb,

10mK

Silicon: 45mm $\times 45$ mm $\times 0.3$ mm AlMn TES 45mm · Au Pad AO 📃 do 😃 ф. ≞ ф. 皀

Nb electrode

- ▶ 研究了AlMn薄膜溅射功率、氩气压强、薄膜厚度、烘烤温度等对薄膜性能的影响
 - 溅射速率与溅射功率成线性关系、几乎不受Ar压影响
 - 240℃以下烘烤的薄膜厚度越厚Tc越低; 随烘烤温度的升高Tc呈现先降低后升高的趋势
- ▶ 通过调节烘烤温度、磁场等实现了用于0vββ实验的10-20mK的AlMn超导薄膜的制备
 - ▶ AlMn薄膜Tc由最高烘烤温度决定
 - ▶ 进行0磁场下的Tc位于10-20mK重复及稳定性测试
- ▶ 完成了基于AlMn合金薄膜的TES探测器的设计及光刻版加工
- ▶ 后续将开展TES探测器器件的制备、光热探测器单元模块的组建、及性能测试¹⁹

中国科学院高能物理研究所

感谢聆听,请批评指正!

汇报人:刘舟慧
单位:中国科学院高能物理研究所
合作组: TES R&D CUPID-China合作组
日期: 2023年12月17日

NvDEx与CUPID-China 合作组2023年会 广东 惠州