

Measurement of transverse polarization of  $\Lambda/\Lambda$  within jet in pp collisions at STAR arXiv:2402.01168

# Transverse polarization of $\Lambda/\overline{\Lambda}$

- In 1976, the large transverse polarization of hyperon was first observed in unpolarized p+Be scattering, in a direction transverse to the production plane.
- The contributions from the hard scattering of hadronic collisions were found to be close to zero, based on perturbative Quantum Chromodynamics (pQCD) calculations
- Possible contribution could be from polarizing fragmentation functions (pFFs) [10, 11] in the final state, which describe the production of a polarized hadron from the fragmentation of an unpolarized parton.



Fig. 1. The illustration of  $\Lambda$  hyperon production inside a jet in *pp* collisions, vector **S** denotes polarization direction defined by jet and  $\Lambda$  momentum:  $\mathbf{S} = \mathbf{p}_{jet} \times \mathbf{p}_{\Lambda}$ .

## Data used

- The *pp* collision data at  $\sqrt{s} = 200$  GeV used for this measurement were collected by the STAR experiment at RHIC in 2015.
- Time Projection Chamber (TPC), Barrel Electronmagnetic Calorimeter (BEMC) and Endcap Electron magnetic Calorimeter(EEMC) are used in this analysis.
- In this analysis, only events triggered by JP1, one of the STAR jet-patch triggers with the threshold of 5.4 GeV, are used.
- The  $\Lambda(\Lambda)$  candidates are reconstructed via the weak decay channel:  $\Lambda \rightarrow p + \pi (\Lambda \rightarrow \bar{p} + \pi +)$ .
- Following similar procedure as in Ref. [20] except that the Time of Flight hit matching is not required for the pion track.

TABLE I. Selection cuts for  $\Lambda(\bar{\Lambda})$  reconstruction; the upper part is for candidates with daughter  $\pi^-(\pi^+)$  matched to a TOF hit, and the lower part is for candidates without a TOF match. Here, "DCA" denotes "distance of closest approach," "PV" denotes "primary vertex,"  $\vec{r}$  denotes the vector from the primary vertex to the decay vertex of  $\Lambda$  or  $\bar{\Lambda}$  and  $\vec{p}$  denotes the momentum vector of  $\Lambda$  or  $\bar{\Lambda}$ .

| $\pi^{\pm}$ matches a TOF hit                                                                                                                                                          |                                                                |                                                                |                                                                |                                                                |                                                                 |                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|
| $p_{T,\Lambda(\bar{\Lambda})} \; (\text{GeV}/c)$                                                                                                                                       | <2                                                             | 2–3                                                            | 3–4                                                            | 4–5                                                            | 5–6                                                             | >6                                                               |
| DCA of $p(\bar{p})$ to PV<br>DCA of $\pi^{-}(\pi^{+})$ to PV<br>DCA of $p\pi^{-}(\bar{p}\pi^{+})$<br>DCA of $\Lambda(\bar{\Lambda})$ to PV<br>Decay length<br>$\cos(\vec{r}, \vec{p})$ | >0.2 cm<br>>0.6 cm<br><0.75 cm<br><1 cm<br>>3 cm<br>>0.995     | >0.15 cm<br>>0.55 cm<br><0.65 cm<br><1 cm<br>>3.5 cm<br>>0.995 | >0.05 cm<br>>0.5 cm<br><0.6 cm<br><1 cm<br>>3.5 cm<br>>0.995   | >0.005 cm<br>>0.5 cm<br><0.5 cm<br><1 cm<br>>4 cm<br>>0.995    | >0.005 cm<br>>0.5 cm<br><0.45 cm<br><1 cm<br>>4.5 cm<br>>0.995  | >0.005 cm<br>>0.5 cm<br><0.45 cm<br><1 cm<br>>4.5 cm<br>>0.995   |
|                                                                                                                                                                                        |                                                                | $\pi^{\pm}$ does no                                            | t match a TOF h                                                | it                                                             |                                                                 |                                                                  |
| $p_{T,\Lambda(\bar{\Lambda})} \; (\text{GeV}/c)$                                                                                                                                       | <2                                                             | 2–3                                                            | 3–4                                                            | 4–5                                                            | 5–6                                                             | >6                                                               |
| DCA of $p(\bar{p})$ to PV<br>DCA of $\pi^{-}(\pi^{+})$ to PV<br>DCA of $p\pi^{-}(\bar{p}\pi^{+})$<br>DCA of $\Lambda(\bar{\Lambda})$ to PV<br>Decay length<br>$\cos(\vec{r}, \vec{p})$ | >0.45 cm<br>>0.65 cm<br><0.7 cm<br><0.55 cm<br>>7 cm<br>>0.995 | >0.3 cm<br>>0.6 cm<br><0.6 cm<br><0.55 cm<br>>7 cm<br>>0.995   | >0.25 cm<br>>0.55 cm<br><0.55 cm<br><0.6 cm<br>>7 cm<br>>0.995 | >0.2 cm<br>>0.55 cm<br><0.5 cm<br><0.6 cm<br>>8.5 cm<br>>0.995 | >0.15 cm<br>>0.55 cm<br><0.45 cm<br><0.6 cm<br>>10 cm<br>>0.995 | >0.15 cm<br>>0.5 cm<br><0.45 cm<br><0.6 cm<br>>10.5 cm<br>>0.995 |

## Mathed used

- Anti-K\_T algorithm with R = 0.6 and  $P_T^{jet} > 5 \text{ GeV}$  is used.
- To suppress the edge effects, jet pT is further required to be larger than 8 GeV/c.
- The off-axis method [21] is used to correct for the pile-up events or other background to jet reconstruction.

## Result

• The transverse polarization of  $\Lambda$  is extracted via the angular distribution of the daughter particle in the  $\Lambda$  rest frame

$$\frac{dN}{d\cos\theta^*} \propto A(\cos\theta^*)(1 + \alpha_{\Lambda(\overline{\Lambda})}P_{\Lambda(\overline{\Lambda})}\cos\theta^*),$$

where  $A(\cos\theta^*)$  is the acceptance function,  $\theta^*$  is the angle between  $\Lambda$  polarization direction and its daughter p in the  $\Lambda$  rest frame,  $\alpha_{\Lambda/\overline{\Lambda}} = \pm 0.732$  is the decay parameter [22] and  $P_{\Lambda(\overline{\Lambda})}$  is transverse polarization of  $\Lambda$ .

- The detector acceptance function is estimated based on Monte-Carlo simulation by passing the pp events generated by PYTHIA6.4.28 through GEANT3 framework of STAR detector.
- After acceptance correction, the polarization is extracted through fitting  $\cos\theta *$  distribution by a linear function

## Result

- Both  $\Lambda$  and  $\Lambda$  bar indicate a hint of negative transverse polarization and also a weak dependence of jet pT at current precision.
- This is the first hint of non-zero transverse polarization of  $\Lambda(\Lambda)$  inside jet in unpolarized pp collision.





Fig. 2. Preliminary results  $\Lambda$  and  $\overline{\Lambda}$  polarization within a jet versus jet  $p_T$  in unpolarized pp collisions at  $\sqrt{s} = 200$  GeV at STAR.

Fig. 3. Preliminary results of  $\Lambda$  and  $\overline{\Lambda}$  polarization within a jet as a function of transverse momentum  $j_T$  (Left), and jet momentum fraction z (Right) in unpolarized pp collisions at  $\sqrt{s} = 200$  GeV.